The 10th Circum-Pan-Pacific Symposium on High Energy Spin Physics

October 5th-8th, 2015

Institute of Physics, Academia Sinica Taipei, Taiwan

Exclusive processes at hermes

Gunar.Schnell @ desy.de

the 10th Circu

Generalized parton distributions

I believe Peter has done a good job this morning introducing generalized parton distributions (GPDs) ...

Generalized parton distributions

I believe Peter has done a good job this morning introducing generalized parton distributions (GPDs) ...

Generalized parton distributions

I believe Peter has done a good job this morning introducing generalized parton distributions (GPDs) ...

... thanks!

 ... also to Erik Etzelmüller and Charlotte Van Hulse for "slides support"

GPDs in exclusive reactions

Experimentally GPDs can be accessed through measurements of hard exclusive lepton-nucleon scattering processes.

Real-photon production

Real-photon production

Real-photon production

Amplitude of Bethe-Heitler scattering is dominant at HERMES kinematics

$$\frac{d^4\sigma}{dQ^2 \, dx_B \, dt \, d\phi} = \frac{y^2}{32(2\pi)^4 \sqrt{1 + \frac{4M^2 x_B^2}{Q^2}}}$$

DVCS amplitude is amplified by BH in the interference term PacSPIN 2015 - Taipei - Oct. 6th, 2015

 $\left(\left|\mathcal{T}_{\text{DVCS}}\right|^{2}+\left|\mathcal{T}_{\text{BH}}\right|^{2}+\mathcal{I}\right)$

- beam polarization P_B
- beam charge CB
- here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\mathsf{BH}}|^{2} = \frac{K_{\mathsf{BH}}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathsf{BH}} \cos(n\phi)$$

calculable in QED (using form-factor measurements)

- beam polarization P_B
- beam charge C_B
- here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\text{DVCS}}|^2 = \mathcal{K}_{\text{DVCS}} \left[\sum_{n=0}^2 c_n^{\text{DVCS}} \cos(n\phi) + \mathcal{P}_B \sum_{n=1}^1 s_n^{\text{DVCS}} \sin(n\phi) \right]$$

- beam polarization
- beam charge C_B
- here: unpolarized

Fourier expansion

• beam polarization P_B
• beam charge C_B
• here: unpolarized target
Fourier expansion for
$$\phi$$
:
 $|\mathcal{T}_{BH}|^2 = \frac{\mathcal{K}_{BH}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{BH} \cos(n\phi)$
 $|\mathcal{T}_{DVCS}|^2 = \mathcal{K}_{DVCS} \left[\sum_{n=0}^2 c_n^{DVCS} \cos(n\phi) + P_B \sum_{n=1}^1 s_n^{DVCS} \sin(n\phi) \right]$

$$\mathcal{I} = \frac{C_B K_{\mathcal{I}}}{\mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + \frac{P_B}{P_B} \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right]$$

- beam polarization P_B
- beam charge C_B
- here: unpolarized target

Fourier expansion for ϕ :

HERMES (1998-2005) schematically

two (mirror-symmetric) halves -> no homogenous azimuthal coverage

HERMES (1998-2005) schematically

6

two (mirror-symmetric) halves -> no homogenous azimuthal coverage

gunar.schnell @ desy.de

Particle ID detectors allow for

- lepton/hadron separation
- RICH: pion/kaon/proton discrimination 2GeV<p<15GeV

PacSPIN 2015 - Taipei - Oct. 6th, 2015

$$M_x^2 = (k - k' + P_0 - P_\gamma)^2 = M^2 + 2M(\nu - E_\gamma) + t$$

ep -> e γ X

gunar.schnell @ desy.de

PacSPIN 2015 - Taipei - Oct. 6th, 2015

PacSPIN 2015 - Taipei - Oct. 6th, 2015

gunar.schnell @ desy.de

PacSPIN 2015 - Taipei - Oct. 6th, 2015

A wealth of azimuthal amplitudes

Beam-charge asymmetry: GPD H Beam-helicity asymmetry: GPD H PRD 75 (2007) 011103 NPB 829 (2010) 1 JHEP 11 (2009) 083 PRC 81 (2010) 035202 PRL 87 (2001) 182001 JHEP 07 (2012) 032

Transverse target spin asymmetries: GPD E from proton target JHEP 06 (2008

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry: GPD H Double-spin asymmetry: GPD H

A wealth of azimuthal amplitudes

Beam-charge asymmetry: GPD H Beam-helicity asymmetry: GPD H PRD 75 (2007) 011103 NPB 829 (2010) 1 JHEP 11 (2009) 083 PRC 81 (2010) 035202 PRL 87 (2001) 182001 JHEP 07 (2012) 032

Transverse target spin asymmetries: GPD E from proton target JHEP 06 (2008) 066

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry: GPD H Double-spin asymmetry: GPD H complete data set!

Beam-charge asymmetry

[Airapetian et al., JHEP 07 (2012) 032]

constant term:

 $\propto -A_C^{\cos\phi}$

 $\propto \operatorname{Re}[F_1\mathcal{H}]$

[higher twist]

[gluon leading twist]

Resonant fraction:

$$e
ho o e \Delta^+ \gamma$$

A wealth of azimuthal amplitudes

Beam-charge asymmetry: GPD H Beam-helicity asymmetry: GPD H PRD 75 (2007) 011103 NPB 829 (2010) 1 JHEP 11 (2009) 083 PRC 81 (2010) 035202 PRL 87 (2001) 182001 JHEP 07 (2012) 032

Transverse target spin asymmetries: GPD E from proton target

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry: GPD \widetilde{H} Double-spin asymmetry: GPD \widetilde{H} NPB 842 (2011) 265 GPD \widetilde{H}

gunar.schnell @ desy.de

PacSPIN 2015 - Taipei - Oct. 6th, 2015

gunar.schnell @ desy.de

gunar.schnell @ desy.de

PacSPIN 2015 - Taipei - Oct. 6th, 2015

The HERMES Recoil detector

Enables the measurement of the recoiling charged particle and therefore full $ep \rightarrow ep \gamma$ event reconstruction

HERMES detector (2006/07)

kinematic fitting

- All particles in final state detected \rightarrow 4 constraints from energy-momentum conservation

- Selection of pure BH/DVCS ($ep \rightarrow ep \gamma$) with high efficiency (~83%)
- Allows to suppress background from associated and semi-inclusive processes to a negligible level (<0.2%) gunar.schnell @ desy.de PacSPIN 2015 - Taipei - Oct. 6th, 2015

Exclusivity with recoil detector

Single-charge BSA with recoil proton

Single-charge BSA with recoil proton

Magnitude of the leading asymmetry has increased by 0.054 ± 0.016 (-> assoc. in traditional analysis mainly dilution)

basically **no contamination** -> clear interpretation

Single-charge BSA with recoil proton

KM10 - K. Kumericki and D. Müller, Nucl. Phys. B 841 (2010) 1

VGG - M. Vanderhaeghen et al., Phys. Rev. D 60 (1999) 094017

Beam-spin asymmetries $ep \rightarrow e \gamma N\pi$

Besides a better understanding of the unresolved sample, associated DVCS in principle also allows further access to GPDs.

In the large-N_c limit the remaining N $\rightarrow \Delta$ GPDs can be related to the N \rightarrow N iso-vector GPDs:

$$H_M(x,\xi,t) = \frac{2}{\sqrt{3}} \left[E^u(x,\xi,t) - E^d(x,\xi,t) \right],$$
$$C_1(x,\xi,t) = \sqrt{3} \left[\tilde{H}^u(x,\xi,t) - \tilde{H}^d(x,\xi,t) \right],$$
$$C_2(x,\xi,t) = \frac{\sqrt{3}}{4} \left[\tilde{E}^u(x,\xi,t) - \tilde{E}^d(x,\xi,t) \right]$$

Beam-spin asymmetries $ep \rightarrow e \gamma p\pi^0$

Shown amplitudes corrected for background (only overall fractions are listed here):

Associated DVCS/BH (ep \rightarrow e γ p π^{o})	85 ± 1
Elastic DVCS/BH ($ep \rightarrow e \gamma p$)	4.6 ± 0.1
SIDIS (ep→eXπ ⁰)	11 ± 1

[Guichon et al., PRD 68 (2003) 034018]

opposite sign conventions!

Beam-spin asymmetries $ep \rightarrow e \gamma n\pi^+$

Shown amplitudes corrected for background (only overall fractions are listed here):

Associated DVCS/BH (ep \rightarrow e γ n π^+) 77 <u>+</u> 2 Elastic DVCS/BH ($ep \rightarrow e \gamma p$) 0.2 ± 0.1 23 ± 3 SIDIS ($ep \rightarrow eX\pi^{0}$)

opposite sign convention!

GPDs convoluted with meson amplitude

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations

π^0	2∆u+∆d
η	2∆u–∆d
ρ	2u+d, 9 <mark>g</mark> /4
ω	2u–d, 3 <mark>g</mark> /4
φ	s, g
ρ+	u–d
J/ψ	g

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons

π^0	2∆u+∆d
η	2∆u–∆d
ρ	2u+d, 9 <mark>g</mark> /4
ω	2u–d, 3 <mark>g</mark> /4
¢	s, g
ρ+	u–d
J/ψ	g

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model

π^0	2∆u+∆d
η	2∆u–∆d
ρ	2u+d, 9 <mark>g</mark> /4
ω	2u–d, 3 <mark>g</mark> /4
¢	s, g
ρ+	u–d
J/ψ	g

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model
- vector-meson cross section:

π^0	2∆u+∆d
η	2∆u–∆d
ρ	2u+d, 9 <mark>g</mark> /4
ω	2u–d, 3 <mark>g</mark> /4
φ	s, g
ρ+	u–d
J/ψ	g

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x_B\,\mathrm{d}Q^2\,\mathrm{d}t\,\mathrm{d}\phi_S\,\mathrm{d}\phi\,\mathrm{d}\cos\theta\,\mathrm{d}\varphi} = \frac{\mathrm{d}\sigma}{\mathrm{d}x_B\,\mathrm{d}Q^2\,\mathrm{d}t}W(x_B,Q^2,t,\phi_S,\phi,\cos\theta,\varphi)$

 $W = W_{UU} + P_B W_{LU} + S_L W_{UL} + P_B S_L W_{LL} + S_T W_{UT} + P_B S_T W_{LT}$

look at various angular (decay) distributions to study helicity transitions ("spin-density matrix elements") gunar.schnell @ desy.de PacSPIN 2015 - Taipei - Oct. 6th, 2015

"Regge phenomenology"

"Regge phenomenology"

natural-parity exchange J^p = 0⁺, 1⁻,... GPDs H&E

N

Ν

е

"Regge phenomenology"

natural-parity exchange $J^{p} = 0^{+}, 1^{-},...$ GPDs H&E unnatural-parity exchange $J^{p} = 0^{-}, 1^{+},...$ GPDs H&E

N

Ν

е

ρ^{0} SDMEs from HERMES

target-polarization independent SDMEs

ρ^{0} SDMEs from HERMES

ρ^{0} SDMEs from HERMES

p^o SDMEs from HERMES: challenges

$\dots \omega$ production

helicity-conserving
 SDMEs dominate

gunar.schnell @ desy.de

PacSPIN 2015 - Taipei - Oct. 6th, 2015

 $\dots \omega$ production

- helicity-conserving
 SDMEs dominate
- hardly any violation of SCHC, except maybe for

• r_{00}^5 • $r_{11}^5 + r_{1-1}^5 - \Im r_{1-1}^6$

• interference smaller than for ρ^0 ...

 $\dots \omega$ production

helicity-conserving
 SDMEs dominate

 r_{00}^{5}

 hardly any violation of SCHC, except maybe for

• $r_{11}^5 + r_{1-1}^5 - \Im r_{1-1}^6$

• interference smaller than for ρ^0 ...

... and opposite signs for $r_{1-1}^1 \& \Im r_{1-1}^2$

(un)natural-parity exchange contributions

$$\Im r_{1-1}^2 - r_{1-1}^1 = \frac{1}{\mathcal{N}} \underbrace{\sum}_{\mathbf{V}} (|U_{11}|^2 - |T_{11}|^2)$$

$$(VPE \text{ contribution} \text{ NPE contribution})$$

positive for omega -> large UPE contributions (unlike for rho)

can construct various UPE quantities:

$$u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1}$$
$$u_{2} = r_{11}^{5} + r_{1-1}^{5}$$
$$u_{3} = r_{11}^{8} + r_{1-1}^{8}$$

test of UPE

test of UPE

Iarge UPE contributions

test of UPE

- Iarge UPE contributions
- modified GK model [EPJ A50 (2014) 146] can describe data when including
 - pion pole contribution (red curve)
 - corresponding $\pi\omega$ transition form factor (fit to these data)

PacSPIN 2015 - Taipei - Oct. 6th, 2015

"class-B" - interference of helicity-conserving transitions

PacSPIN 2015 - Taipei - Oct. 6th, 2015

"class-B" - interference of helicity-conserving transitions

long.-to-transverse cross-section ratio

• significantly smaller for ω than for ρ

important contribution from pion pole

transverse-spin asymmetry

sensitive, in principle, to sign of $\pi\omega$ transition FF

slight preference for positive $\pi \omega$ transition FF (red/full line) vs. negative one (magenta/dash-dotted line)

gunar.schnell @ desy.de

 $\mathbf{A}S_T$

 $\mathbf{\Phi}_{S}$

 ω_{λ}

Ø

 \mathbf{v}^*

DVCS @ HERMES

HERMES analyzed a wealth of DVCSrelated asymmetries on nucleon and nuclear targets

data with recoil-proton detection allows clean interpretation

indication of larger amplitudes for pure sample

-> assoc. DVCS in "traditional" analysis mainly dilution, supported by recent results from HERMES [JHEP 01 (2014) 077]:

assoc. DVCS results consistent with zero but also with model prediction

HEMP @ HERMES

- extensive data set on unpolarized and polarized
 SDMEs in vector-meson
 production
- (not shown:) cross section π^{+} and A_{UT} for excl. π^{+}
- essential input in model
 building
- recent results on omega production require pionpole contribution with a preference for positive πω transition FF

SSD (silicon strip detector)

5.8 cm away from lepton beam, 1.5 cm gap sensor thickness 295 μm - 315 μm thickness of target cell 75 μm

The HERMES recoil detector

Sketch of front- and backside of a silicon strip detector mod<mark>ul</mark>e (SSD)

Schematic design of the scintillating fibre tracker (SFT)

gunar.schnell @ desy.de

PacSPIN 2015 - Taipei - Oct. 6th, 2015

The HERMES recoil detector

The silicon strip detector (SSD)

The scintillating fibre tracker (SFT)

SFT (scintillating fibre tracker)

11.5 cm (18.5 cm) inner (outer) radius 1318+1320 (2198+2180) fibers with a diameter of 1 mm each readout by 64-channel Hamamatsu H7546B MAPMTs

Kinematic coverage of the HERMES RD

Scintillating fibre tracker (SFT) and silicon strip detector (SSD) complement each other

Recoil-detector tracking

taking energy loss into account improves momentum resolution for low p azimuthal-angle resolution: 4 mrad polar-angle resolution: 10 mrad (for p>0.5 GeV)

Kinematic event fitting

- 4-momentum conservation as constraints
- lowest χ^2 -value in case of multiple

recoil tracks per event

• minimum of 1 % fit probability required, which corresponds to χ^2 < 13.7

Recoil PID

discrimination between protons and positively charged pions

parent distributions were crucial and determined experimentally

Kinematic fitting for $ep \rightarrow e \gamma p\pi^{0}$

Using powerful kinematic fitting of $ep \rightarrow e\gamma p$ hypothesis is crucial for the $ep \rightarrow e\gamma N\pi$ analysis

gunar.schnell @ desy.de

PacSPIN 2015 - Taipei - Oct. 6th, 2015

Selection of associated events

Uncharged particle remains undetected

Kinematic fitting in case of ep \rightarrow e γ N π hypothesis therefore not as strong

Additional selection criteria:

- Recoil PID information
- Lower-cut on $ep \rightarrow e \gamma p$

hypothesis

gunar.schnell @ desy.de

PacSPIN 2015 - Taipei - Oct. 6th, 2015