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Recall of the Controversies: gauge invariance 

   

Jaffe-Manohar [NPB337:509 (1990)]
!
J total = d 3xψ + 1

2

!
Σψ∫ + d 3x!x ×ψ + 1

i

!
∇ψ +∫ d 3x

!
E ×
!
A∫ + d 3x!x × Ei

!
∇Ai∫

Ji [PRL78:610 (1997)],  Chen-Wang [CTP27:212 (1997)]
!
J total = d 3xψ + 1

2

!
Σψ∫ + d 3x!x ×ψ + 1

i

!
Dψ∫ + d 3x!x ×

!
E ×
!
B( )∫

Chen-L""u-Sun-Wang-Goldman [PRL100:232002 (2008); 103:062001 (2009)]
!
J total = d 3xψ + 1

2

!
Σψ∫ + d 3x

!
x ×ψ + 1

i

!
Dpureψ +∫ d 3x

!
E ×
!
Aphys∫ + d 3x

!
x × Ei

!
Dpure Aphys

i∫

Wakamatsu [PRD81:114010(2010); 83:014012 (2011); 84:037501 (2011)]
!
J total = d 3xψ + 1

2

!
Σψ∫ + d 3x

!
x ×ψ + 1

i

!
Dψ∫ + d 3x

!
E ×
!
Aphys∫ + d 3x

!
x × (Ei

!
Dpure Aphys

i +
!
Aphys

a ρ a )∫



•  Construction of Spin Eigenstate 
•  Simplification of Spin Structure 
•  Experimental differentiation of Spin

 from OAM 
•  Enlarged inspection: The angular

 momentum tensor and flux density 

    A practical perspective: 



Hint from a forgotten practice: Why
 photon is ignored for atomic spin? 

Do these solutions make sense?! 



The atom as a whole 



Close look at the photon contribution 

The static terms! 



Justification of neglecting photon field 



A critical gap to be closed 



The same story with Hamiltonian 



The fortune of using Coulomb gauge 



Gauge-invariant revision  
– Angular Momentum 



Gauge-invariant revision 
-Momentum and Hamiltonian 



The covariant scheme 

spurious photon angular momentum 
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Gluon angular momentum in the nucleon: 
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approaches Aµ at infinity. Note that Aµ or more precisely its pure-
gauge part Āµ may not vanish at infinity even if Fµν does. How-
ever, if they do (as typically obtains in perturbative calculations),
the expressions for Âµ and Āµ can be greatly simplified:

Âµ = 1

∂⃗2
∂i(∂i Aµ − ∂µ Ai) = Aµ − ∂µ

1

∂⃗2
∂i Ai (5a)

Āµ = ∂µ
1

∂⃗2
∂i Ai (5b)

For the non-Abelian gluon field, Aµ ≡ Aa
µT a , with T a the color

matrix, the defining equations for Âµ and Āµ are most elegantly
arranged as [2,9]

F̄µν ≡ ∂µ Āν − ∂ν Āµ + ig[ Āµ, Āν ] = 0 (6a)

D̄i Âi ≡ ∂i Âi + ig[ Āi, Âi] = 0 (6b)

That is, Āµ is still a pure gauge, and the gauge covariant spa-
tial divergence of Âµ vanishes. The physical field, Âµ (like the
non-Abelian field strength Fµν ), is now gauge-covariant instead of
gauge-invariant, and has to be solved perturbatively. The leading
term is the same as in Eq. (1). At next-to-leading order, the ex-
pression is [9]:

Âµ = 1

∂⃗2
∂i F iµ + ig

1

∂⃗2

{[
1

∂⃗2
∂k Fki,∂i
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1

∂⃗2
∂k Fkµ

]
+ ∂µ

[
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∂k Fki, Ai

]}
+ O

(
g2) (7)

This expression only requires that Fµν vanish fast enough at infin-
ity. If Aµ does also, then the expressions for Âµ and Āµ simplify
to

Âµ = Aµ − Āµ (8a)

Āµ = ∂µ
1

∂⃗2
∂i Ai + ig

{
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1
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[
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1
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]}
+ O

(
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Separation of the physical and gauge degrees of freedom in Aµ

can be of great use and convenience. A significant example is the
gauge-invariant, complete decomposition of the total QCD angular
momentum operator into four terms [1,2]:

J⃗QCD =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei
⃗̄D Âi

≡ S⃗q + L⃗q + S⃗ g + L⃗ g (9)

Here D̄µ ≡ ∂µ + ig Āµ is the pure-gauge covariant derivative for
the quark field, and D̄µ ≡ ∂µ + ig[ Āµ, ] is the pure-gauge covariant
derivative for a field in the adjoint representation. For an Abelian
theory, Âµ is gauge invariant and does not need a covariant deriva-
tive, so the decomposition of the total QED angular momentum
operator is a little simpler (in the sector of photon orbital angular
momentum):

J⃗QED =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei ∂⃗ Âi

≡ S⃗e + L⃗e + S⃗γ + L⃗γ (10)

[A remarkable (and somewhat mysterious) fact is that using the
ordinary derivative can also lead to a gauge-invariant gluon orbital
angular momentum, which however dictates a very specific defini-
tion of Âµ . See Ref. [1] for a detailed discussion.]

Note that Eqs. (9) and (10) provide operational decompositions:
Given the explicit expressions of Âµ and Āµ , we can straight-
forwardly make calculations with the operators in Eqs. (9) and
(10). We will concentrate here on the gauge-invariant “gluon spin”,
S⃗ g . In comparison, the widely discussed “gluon polarization” &g ,
which is defined through gauge-invariant polarized gluon distri-
bution function, reduces to the gauge-dependent local operator∫

d3x E⃗ × A⃗ only in the light-cone gauge [10]. The aim of this
Letter is to investigate the properties of S⃗ g , and to make a quanti-
tative comparison with &g . To make the conclusion as concrete as
possible, we take the simplest non-trivial example of a 1-loop cal-
culation in an on-shell quark state. As we will show, S g is typically
much smaller than &g . Moreover, a remarkable and physically ap-
pealing feature of our gauge-invariant definitions in Eq. (9) is that
the “static field” does not contribute to the total gluon angular an-
gular momentum, S g + Lg . [The same feature holds for the total
photon angular momentum, Sγ + Lγ .] If the static pieces are sub-
tracted altogether from S g and Lg (which leaves the sum, S g + Lg ,
unaltered), the remaining “dynamic” gluon spin is only 1

9 of &g .
Since S⃗ g and L⃗ g are explicitly gauge-invariant operators, the

calculation can be performed in any gauge for convenience. The
covariant gauge has the simplest Feynman rules. But for our pur-
pose the Coulomb gauge ∂⃗ · A⃗ = 0 is the most convenient: Eqs. (8)
indicate that as ∂⃗ · A⃗, we have Āµ = 0 and Âµ = Aµ in this gauge.

For the 1-loop calculation of the gluon matrix element in a
quark state, the gluon field behaves like eight independent Abelian
fields. Consider a quark state, |pσ ⟩, with momentum p and polar-
ization σ along the third axis. At 1-loop order one finds [11]

&g ≡ ⟨pσ |
∫

d3x (E⃗ × A⃗)3|pσ ⟩A+=0 = σ · 2
αs

π
ln

Q 2

m2 (11)

where Q 2 and m2 are the ultraviolet and infrared cutoffs, respec-
tively. For comparison, our gauge-invariant “gluon spin” leads to

S g ≡ ⟨pσ |
∫

d3x (E⃗ × ⃗̂A)3|pσ ⟩

= ⟨pσ |
∫

d3x (E⃗ × A⃗)3|pσ ⟩∂⃗· A⃗=0 = 5
9
&g (12)

Here we have used the important and convenient relation that

the matrix element of the gauge-invariant operator E⃗ × ⃗̂A (in any
gauge) is the same as that of the gauge-dependent operator E⃗ × A⃗
in the Coulomb gauge. (The reader should keep in mind that &g
has a local operator expression only in light-cone gauge, whereas
we have only chosen to evaluate our gauge-invariant operator in
Coulomb gauge.)

We see that S g is much smaller than &g . The reason can be
traced to the fact that S g is constructed solely with the “phys-
ical” gluon field, while &g is calculated in the light-cone gauge
in which Aµ contains both physical and pure-gauge components;
thus &g includes a non-physical pure-gauge contribution. This
suggests that S g is a more physical and reasonable definition of
the gluon spin than &g . And indeed, &g leads to a spuriously large
gluon content in a parent quark state. A rather heuristic way to see
this is by renormalizing the divergent S g and &g in a very specific
way, namely, by choosing the ultraviolet cutoff Q 2 to be the same
as the scale for the running coupling constant:

αs
(

Q 2) = g2(Q 2)

4π
= 12π

(33 − 2n f ) ln(Q 2/Λ2)
(13)
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Āµ = ∂µ
1

∂⃗2
∂i Ai + ig

{
∂µ

1

∂⃗2

[
∂i

1

∂⃗2
∂k Ak, Ai

]

− ∂i
1

∂⃗2

[
∂i

1

∂⃗2
∂k Ak,∂µ

1

∂⃗2
∂k Ak

]}
+ O

(
g2) (8b)

Separation of the physical and gauge degrees of freedom in Aµ

can be of great use and convenience. A significant example is the
gauge-invariant, complete decomposition of the total QCD angular
momentum operator into four terms [1,2]:

J⃗QCD =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei
⃗̄D Âi
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Âµ = 1

∂⃗2
∂i(∂i Aµ − ∂µ Ai) = Aµ − ∂µ

1

∂⃗2
∂i Ai (5a)
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Here D̄µ ≡ ∂µ + ig Āµ is the pure-gauge covariant derivative for
the quark field, and D̄µ ≡ ∂µ + ig[ Āµ, ] is the pure-gauge covariant
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≡ S⃗e + L⃗e + S⃗γ + L⃗γ (10)

[A remarkable (and somewhat mysterious) fact is that using the
ordinary derivative can also lead to a gauge-invariant gluon orbital
angular momentum, which however dictates a very specific defini-
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Physical part of the non-Abelian gluon field  
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If the quark flavor n f is set to 3, then at large Q 2 we find !g =
8
9 σ , while S g ≃ 0.5σ .

We now derive the major conclusion of this Letter, namely that

the gauge-invariant gluon or photon spin E⃗ × ⃗̂A can be further
separated into two gauge-invariant terms, one of which, a “static-
field” term, exactly cancels an analogous term in the gluon or
photon orbital angular momentum. The point is that the separation
Aµ = Âµ + Āµ allows one to split the electric field E⃗ into gauge-
invariant (in Abelian case) or gauge-covariant (in non-Abelian case)
pieces. (Such splitting is not possible with the full Aµ .)

For the simpler Abelian case, we have:

E⃗ = −∂t A⃗ − ∂⃗ A0 = −∂t
⃗̂A − ∂⃗ Â0 ≡ E⃗dy + E⃗st (14)

We call E⃗dy ≡ −∂t
⃗̂A the “dynamic” field and E⃗st ≡ −∂⃗ Â0 the “stat-

ic” field. [We apologize that the word “static” is not very perti-
nent, because −∂⃗ Â0 can as well be time-dependent. By “static”
we mean exactly “can-be-static”, i.e., −∂⃗ Â0 can survive for a static

configuration, while the “dynamic” field −∂t
⃗̂A cannot. This nota-

tion will prove quite illuminating for the non-Abelian field.] As
promised, E⃗dy and E⃗st are separately gauge-invariant, since they

are constructed with the gauge-invariant physical fields ⃗̂A and Â0,
respectively. Now the “static” and “dynamic” terms of the photon
spin S⃗γ can be defined as

S⃗st
γ ≡

∫
d3x E⃗st × ⃗̂A =

∫
d3x

(
−∂⃗ Â0) × ⃗̂A (15a)

S⃗dy
γ ≡

∫
d3x E⃗dy × ⃗̂A =

∫
d3x (−∂t

⃗̂A) × ⃗̂A (15b)

Similarly, we can define “static” and “dynamic” terms of the
photon orbital angular momentum:

L⃗st
γ ≡

∫
d3x x⃗ × Est

i ∂⃗ Âi =
∫

d3x x⃗ ×
(
−∂i Â0)∂⃗ Âi (16a)

L⃗dy
γ ≡

∫
d3x x⃗ × Edy

i ∂⃗ Âi =
∫

d3x x⃗ × (−∂t Âi)∂⃗ Âi (16b)

The “static” terms S⃗st
γ and L⃗st

γ are not zero individually, but a

little algebra shows that the sum S⃗st
γ + L⃗st

γ always vanishes:

S⃗st
γ =

∫
d3x

(
−∂⃗ Â0) × ⃗̂A =

∫
d3x Â0∂⃗ × ⃗̂A (17a)

L⃗st
γ =

∫
d3x

(
−∂i Â0)x⃗ × ∂⃗ Âi

=
∫

d3x Â0(∂i x⃗) × ∂⃗ Âi +
∫

d3x x⃗ × ∂⃗(∂i Âi)

= −
∫

d3x Â0∂⃗ × ⃗̂A = − S⃗st
γ (17b)

Thus, it is not very meaningful to count S⃗st
γ as part of the

photon spin and L⃗st
γ = − S⃗st

γ as part of the photon orbital angular
momentum, and we can wisely subtract these two canceling terms
altogether from S⃗γ and L⃗γ . (This cancelation is also discussed by
Wakamatsu [3].)

It is worthwhile to remark that the vanishing of “static” angu-
lar momentum is masked if one defines the total photon angular
momentum as

∫
d3x x⃗ × (E⃗ × B⃗). Similarly, by defining photon mo-

mentum as
∫

d3x E⃗ × B⃗ , ones does not see the vanishing of a “stat-
ic” term either, which however shows up clearly if one defines the
photon momentum as P⃗γ ≡

∫
d3x Ei ∂⃗ Âi :

P⃗ st
γ =

∫
d3x Est

i ∂⃗ Âi =
∫

d3x
(
−∂i Â0)∂⃗ Âi

=
∫

d3x Â0∂⃗(∂i Âi) = 0 (18)

Separation of the gluon spin S⃗ g , or essentially the non-Abelian
color electric field E⃗ , is much more involved due to non-linearity,
but a satisfactory separation does exist:

E⃗ = −∂t A⃗ − ∇⃗ A0 + ig
[

A⃗, A0]

= −D̄t
⃗̂A − ⃗̄D Â0 + ig

[ ⃗̂A, Â0]

≡ E⃗dy + E⃗st + E⃗nl (19)

In arranging the first line into the second line, we have used the
pure-gauge condition ⃗̄E ≡ −∂t

⃗̄A − ∂⃗ Ā0 + ig[ ⃗̄A, Ā0] = 0. In addition

to the “dynamic” term E⃗dy ≡ −D̄t
⃗̂A and the “static” term E⃗st ≡

− ⃗̄D Â0, we find now a non-linear term E⃗nl ≡ ig[ ⃗̂A, Â0]. All these
three terms are individually gauge-covariant. In consequence, we
can separate the gluon spin S⃗ g into three gauge-invariant parts:

S⃗st
g ≡

∫
d3x E⃗st × ⃗̂A =

∫
d3x

(
− ⃗̄D Â0) × ⃗̂A (20a)

S⃗dy
g ≡

∫
d3x E⃗dy × ⃗̂A =

∫
d3x (−D̄t

⃗̂A) × ⃗̂A (20b)

S⃗nl
g ≡

∫
d3x E⃗nl × ⃗̂A =

∫
d3x ig

[ ⃗̂A, Â0] × ⃗̂A (20c)

A similar gauge-invariant separation applies to the gluon orbital
angular momentum:

L⃗st
g ≡

∫
d3x x⃗ × Est

i
⃗̄D Âi =

∫
d3x x⃗ ×

(
−D̄i Â0) ⃗̄D Âi (21a)

L⃗dy
g ≡

∫
d3x x⃗ × Edy

i
⃗̄D Âi =

∫
d3x x⃗ × (−D̄t Âi)

⃗̄D Âi (21b)

L⃗nl
g ≡

∫
d3x x⃗ × Enl

i
⃗̄D Âi =

∫
d3x x⃗ × ig[ Âi, Â0] ⃗̄D Âi (21c)

Although the expressions are much more complicated, we can
still prove that the total “static” angular momentum S⃗st

g + L⃗st
g van-

ishes identically. The easiest way to see this is to work in the
Coulomb gauge, which gives Āµ = 0 and Âµ = Aµ , thus S⃗st

g and
L⃗st

g reduce to the same expressions as for the photon. Then, the
same procedure as in Eqs. (17) shows ( S⃗st

g + L⃗st
g )∂⃗· A⃗=0 = 0. But

since ( S⃗st
g + L⃗st

g ) is gauge invariant, it is identically zero in any
gauge. The same reasoning shows that the “static” gluon momen-

tum P⃗ st
g ≡

∫
d3x Est

i
⃗̄D Âi ≡ 0. But again, the vanishing of “static”

gluon momentum and angular momentum are masked if they are
defined through the Poynting vector E⃗ × B⃗ .

Discarding the not-so-meaningful static term, we resume the 1-
loop calculation and see how much “essential gluon spin” is left in
a parent quark state. At 1-loop order the non-linear term S⃗nl

g does

not contribute. The remaining “dynamic gluon spin” S⃗dy
g is found

to contribute

Sdy
g ≡ ⟨pσ |

∫
d3x

(
E⃗dy × ⃗̂A

)
3|pσ ⟩

= ⟨pσ |
∫

d3x
(

E⃗dy × A⃗
)

3|pσ ⟩∂⃗· A⃗=0

= 1
5

S g = 1
9
!g = σ · 2

9
αs

π
ln

Q 2

m2 (22)

Quite remarkably, we see that Sdy
g is largely negligible com-

pared to S g or !g , e.g., the specific renormalization found by
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If the quark flavor n f is set to 3, then at large Q 2 we find !g =
8
9 σ , while S g ≃ 0.5σ .

We now derive the major conclusion of this Letter, namely that

the gauge-invariant gluon or photon spin E⃗ × ⃗̂A can be further
separated into two gauge-invariant terms, one of which, a “static-
field” term, exactly cancels an analogous term in the gluon or
photon orbital angular momentum. The point is that the separation
Aµ = Âµ + Āµ allows one to split the electric field E⃗ into gauge-
invariant (in Abelian case) or gauge-covariant (in non-Abelian case)
pieces. (Such splitting is not possible with the full Aµ .)

For the simpler Abelian case, we have:

E⃗ = −∂t A⃗ − ∂⃗ A0 = −∂t
⃗̂A − ∂⃗ Â0 ≡ E⃗dy + E⃗st (14)

We call E⃗dy ≡ −∂t
⃗̂A the “dynamic” field and E⃗st ≡ −∂⃗ Â0 the “stat-

ic” field. [We apologize that the word “static” is not very perti-
nent, because −∂⃗ Â0 can as well be time-dependent. By “static”
we mean exactly “can-be-static”, i.e., −∂⃗ Â0 can survive for a static

configuration, while the “dynamic” field −∂t
⃗̂A cannot. This nota-

tion will prove quite illuminating for the non-Abelian field.] As
promised, E⃗dy and E⃗st are separately gauge-invariant, since they

are constructed with the gauge-invariant physical fields ⃗̂A and Â0,
respectively. Now the “static” and “dynamic” terms of the photon
spin S⃗γ can be defined as

S⃗st
γ ≡

∫
d3x E⃗st × ⃗̂A =

∫
d3x

(
−∂⃗ Â0) × ⃗̂A (15a)

S⃗dy
γ ≡

∫
d3x E⃗dy × ⃗̂A =

∫
d3x (−∂t

⃗̂A) × ⃗̂A (15b)

Similarly, we can define “static” and “dynamic” terms of the
photon orbital angular momentum:

L⃗st
γ ≡

∫
d3x x⃗ × Est

i ∂⃗ Âi =
∫

d3x x⃗ ×
(
−∂i Â0)∂⃗ Âi (16a)

L⃗dy
γ ≡

∫
d3x x⃗ × Edy

i ∂⃗ Âi =
∫

d3x x⃗ × (−∂t Âi)∂⃗ Âi (16b)

The “static” terms S⃗st
γ and L⃗st

γ are not zero individually, but a

little algebra shows that the sum S⃗st
γ + L⃗st

γ always vanishes:

S⃗st
γ =

∫
d3x

(
−∂⃗ Â0) × ⃗̂A =

∫
d3x Â0∂⃗ × ⃗̂A (17a)

L⃗st
γ =

∫
d3x

(
−∂i Â0)x⃗ × ∂⃗ Âi

=
∫

d3x Â0(∂i x⃗) × ∂⃗ Âi +
∫

d3x x⃗ × ∂⃗(∂i Âi)

= −
∫

d3x Â0∂⃗ × ⃗̂A = − S⃗st
γ (17b)

Thus, it is not very meaningful to count S⃗st
γ as part of the

photon spin and L⃗st
γ = − S⃗st

γ as part of the photon orbital angular
momentum, and we can wisely subtract these two canceling terms
altogether from S⃗γ and L⃗γ . (This cancelation is also discussed by
Wakamatsu [3].)

It is worthwhile to remark that the vanishing of “static” angu-
lar momentum is masked if one defines the total photon angular
momentum as

∫
d3x x⃗ × (E⃗ × B⃗). Similarly, by defining photon mo-

mentum as
∫

d3x E⃗ × B⃗ , ones does not see the vanishing of a “stat-
ic” term either, which however shows up clearly if one defines the
photon momentum as P⃗γ ≡

∫
d3x Ei ∂⃗ Âi :

P⃗ st
γ =

∫
d3x Est

i ∂⃗ Âi =
∫

d3x
(
−∂i Â0)∂⃗ Âi

=
∫

d3x Â0∂⃗(∂i Âi) = 0 (18)

Separation of the gluon spin S⃗ g , or essentially the non-Abelian
color electric field E⃗ , is much more involved due to non-linearity,
but a satisfactory separation does exist:

E⃗ = −∂t A⃗ − ∇⃗ A0 + ig
[

A⃗, A0]

= −D̄t
⃗̂A − ⃗̄D Â0 + ig

[ ⃗̂A, Â0]

≡ E⃗dy + E⃗st + E⃗nl (19)

In arranging the first line into the second line, we have used the
pure-gauge condition ⃗̄E ≡ −∂t

⃗̄A − ∂⃗ Ā0 + ig[ ⃗̄A, Ā0] = 0. In addition

to the “dynamic” term E⃗dy ≡ −D̄t
⃗̂A and the “static” term E⃗st ≡

− ⃗̄D Â0, we find now a non-linear term E⃗nl ≡ ig[ ⃗̂A, Â0]. All these
three terms are individually gauge-covariant. In consequence, we
can separate the gluon spin S⃗ g into three gauge-invariant parts:

S⃗st
g ≡

∫
d3x E⃗st × ⃗̂A =

∫
d3x

(
− ⃗̄D Â0) × ⃗̂A (20a)

S⃗dy
g ≡

∫
d3x E⃗dy × ⃗̂A =

∫
d3x (−D̄t

⃗̂A) × ⃗̂A (20b)

S⃗nl
g ≡

∫
d3x E⃗nl × ⃗̂A =

∫
d3x ig

[ ⃗̂A, Â0] × ⃗̂A (20c)

A similar gauge-invariant separation applies to the gluon orbital
angular momentum:

L⃗st
g ≡

∫
d3x x⃗ × Est

i
⃗̄D Âi =

∫
d3x x⃗ ×

(
−D̄i Â0) ⃗̄D Âi (21a)

L⃗dy
g ≡

∫
d3x x⃗ × Edy

i
⃗̄D Âi =

∫
d3x x⃗ × (−D̄t Âi)

⃗̄D Âi (21b)

L⃗nl
g ≡

∫
d3x x⃗ × Enl

i
⃗̄D Âi =

∫
d3x x⃗ × ig[ Âi, Â0] ⃗̄D Âi (21c)

Although the expressions are much more complicated, we can
still prove that the total “static” angular momentum S⃗st

g + L⃗st
g van-

ishes identically. The easiest way to see this is to work in the
Coulomb gauge, which gives Āµ = 0 and Âµ = Aµ , thus S⃗st

g and
L⃗st

g reduce to the same expressions as for the photon. Then, the
same procedure as in Eqs. (17) shows ( S⃗st

g + L⃗st
g )∂⃗· A⃗=0 = 0. But

since ( S⃗st
g + L⃗st

g ) is gauge invariant, it is identically zero in any
gauge. The same reasoning shows that the “static” gluon momen-

tum P⃗ st
g ≡

∫
d3x Est

i
⃗̄D Âi ≡ 0. But again, the vanishing of “static”

gluon momentum and angular momentum are masked if they are
defined through the Poynting vector E⃗ × B⃗ .

Discarding the not-so-meaningful static term, we resume the 1-
loop calculation and see how much “essential gluon spin” is left in
a parent quark state. At 1-loop order the non-linear term S⃗nl

g does

not contribute. The remaining “dynamic gluon spin” S⃗dy
g is found

to contribute

Sdy
g ≡ ⟨pσ |

∫
d3x

(
E⃗dy × ⃗̂A

)
3|pσ ⟩

= ⟨pσ |
∫

d3x
(

E⃗dy × A⃗
)

3|pσ ⟩∂⃗· A⃗=0

= 1
5

S g = 1
9
!g = σ · 2

9
αs

π
ln

Q 2

m2 (22)

Quite remarkably, we see that Sdy
g is largely negligible com-

pared to S g or !g , e.g., the specific renormalization found by
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approaches Aµ at infinity. Note that Aµ or more precisely its pure-
gauge part Āµ may not vanish at infinity even if Fµν does. How-
ever, if they do (as typically obtains in perturbative calculations),
the expressions for Âµ and Āµ can be greatly simplified:

Âµ = 1

∂⃗2
∂i(∂i Aµ − ∂µ Ai) = Aµ − ∂µ

1

∂⃗2
∂i Ai (5a)

Āµ = ∂µ
1

∂⃗2
∂i Ai (5b)

For the non-Abelian gluon field, Aµ ≡ Aa
µT a , with T a the color

matrix, the defining equations for Âµ and Āµ are most elegantly
arranged as [2,9]

F̄µν ≡ ∂µ Āν − ∂ν Āµ + ig[ Āµ, Āν ] = 0 (6a)

D̄i Âi ≡ ∂i Âi + ig[ Āi, Âi] = 0 (6b)

That is, Āµ is still a pure gauge, and the gauge covariant spa-
tial divergence of Âµ vanishes. The physical field, Âµ (like the
non-Abelian field strength Fµν ), is now gauge-covariant instead of
gauge-invariant, and has to be solved perturbatively. The leading
term is the same as in Eq. (1). At next-to-leading order, the ex-
pression is [9]:

Âµ = 1

∂⃗2
∂i F iµ + ig

1

∂⃗2

{[
1

∂⃗2
∂k Fki,∂i

1

∂⃗2
∂k Fkµ − ∂i Aµ

]

− ∂i

[
Ai,

1

∂⃗2
∂k Fkµ

]
+ ∂µ

[
1

∂⃗2
∂k Fki, Ai

]}
+ O

(
g2) (7)

This expression only requires that Fµν vanish fast enough at infin-
ity. If Aµ does also, then the expressions for Âµ and Āµ simplify
to

Âµ = Aµ − Āµ (8a)

Āµ = ∂µ
1

∂⃗2
∂i Ai + ig

{
∂µ

1

∂⃗2

[
∂i

1

∂⃗2
∂k Ak, Ai

]

− ∂i
1

∂⃗2

[
∂i

1

∂⃗2
∂k Ak,∂µ

1

∂⃗2
∂k Ak

]}
+ O

(
g2) (8b)

Separation of the physical and gauge degrees of freedom in Aµ

can be of great use and convenience. A significant example is the
gauge-invariant, complete decomposition of the total QCD angular
momentum operator into four terms [1,2]:

J⃗QCD =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei
⃗̄D Âi

≡ S⃗q + L⃗q + S⃗ g + L⃗ g (9)

Here D̄µ ≡ ∂µ + ig Āµ is the pure-gauge covariant derivative for
the quark field, and D̄µ ≡ ∂µ + ig[ Āµ, ] is the pure-gauge covariant
derivative for a field in the adjoint representation. For an Abelian
theory, Âµ is gauge invariant and does not need a covariant deriva-
tive, so the decomposition of the total QED angular momentum
operator is a little simpler (in the sector of photon orbital angular
momentum):

J⃗QED =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei ∂⃗ Âi

≡ S⃗e + L⃗e + S⃗γ + L⃗γ (10)

[A remarkable (and somewhat mysterious) fact is that using the
ordinary derivative can also lead to a gauge-invariant gluon orbital
angular momentum, which however dictates a very specific defini-
tion of Âµ . See Ref. [1] for a detailed discussion.]

Note that Eqs. (9) and (10) provide operational decompositions:
Given the explicit expressions of Âµ and Āµ , we can straight-
forwardly make calculations with the operators in Eqs. (9) and
(10). We will concentrate here on the gauge-invariant “gluon spin”,
S⃗ g . In comparison, the widely discussed “gluon polarization” &g ,
which is defined through gauge-invariant polarized gluon distri-
bution function, reduces to the gauge-dependent local operator∫

d3x E⃗ × A⃗ only in the light-cone gauge [10]. The aim of this
Letter is to investigate the properties of S⃗ g , and to make a quanti-
tative comparison with &g . To make the conclusion as concrete as
possible, we take the simplest non-trivial example of a 1-loop cal-
culation in an on-shell quark state. As we will show, S g is typically
much smaller than &g . Moreover, a remarkable and physically ap-
pealing feature of our gauge-invariant definitions in Eq. (9) is that
the “static field” does not contribute to the total gluon angular an-
gular momentum, S g + Lg . [The same feature holds for the total
photon angular momentum, Sγ + Lγ .] If the static pieces are sub-
tracted altogether from S g and Lg (which leaves the sum, S g + Lg ,
unaltered), the remaining “dynamic” gluon spin is only 1

9 of &g .
Since S⃗ g and L⃗ g are explicitly gauge-invariant operators, the

calculation can be performed in any gauge for convenience. The
covariant gauge has the simplest Feynman rules. But for our pur-
pose the Coulomb gauge ∂⃗ · A⃗ = 0 is the most convenient: Eqs. (8)
indicate that as ∂⃗ · A⃗, we have Āµ = 0 and Âµ = Aµ in this gauge.

For the 1-loop calculation of the gluon matrix element in a
quark state, the gluon field behaves like eight independent Abelian
fields. Consider a quark state, |pσ ⟩, with momentum p and polar-
ization σ along the third axis. At 1-loop order one finds [11]

&g ≡ ⟨pσ |
∫

d3x (E⃗ × A⃗)3|pσ ⟩A+=0 = σ · 2
αs

π
ln

Q 2

m2 (11)

where Q 2 and m2 are the ultraviolet and infrared cutoffs, respec-
tively. For comparison, our gauge-invariant “gluon spin” leads to

S g ≡ ⟨pσ |
∫

d3x (E⃗ × ⃗̂A)3|pσ ⟩

= ⟨pσ |
∫

d3x (E⃗ × A⃗)3|pσ ⟩∂⃗· A⃗=0 = 5
9
&g (12)

Here we have used the important and convenient relation that

the matrix element of the gauge-invariant operator E⃗ × ⃗̂A (in any
gauge) is the same as that of the gauge-dependent operator E⃗ × A⃗
in the Coulomb gauge. (The reader should keep in mind that &g
has a local operator expression only in light-cone gauge, whereas
we have only chosen to evaluate our gauge-invariant operator in
Coulomb gauge.)

We see that S g is much smaller than &g . The reason can be
traced to the fact that S g is constructed solely with the “phys-
ical” gluon field, while &g is calculated in the light-cone gauge
in which Aµ contains both physical and pure-gauge components;
thus &g includes a non-physical pure-gauge contribution. This
suggests that S g is a more physical and reasonable definition of
the gluon spin than &g . And indeed, &g leads to a spuriously large
gluon content in a parent quark state. A rather heuristic way to see
this is by renormalizing the divergent S g and &g in a very specific
way, namely, by choosing the ultraviolet cutoff Q 2 to be the same
as the scale for the running coupling constant:

αs
(

Q 2) = g2(Q 2)

4π
= 12π

(33 − 2n f ) ln(Q 2/Λ2)
(13)
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If the quark flavor n f is set to 3, then at large Q 2 we find !g =
8
9 σ , while S g ≃ 0.5σ .

We now derive the major conclusion of this Letter, namely that

the gauge-invariant gluon or photon spin E⃗ × ⃗̂A can be further
separated into two gauge-invariant terms, one of which, a “static-
field” term, exactly cancels an analogous term in the gluon or
photon orbital angular momentum. The point is that the separation
Aµ = Âµ + Āµ allows one to split the electric field E⃗ into gauge-
invariant (in Abelian case) or gauge-covariant (in non-Abelian case)
pieces. (Such splitting is not possible with the full Aµ .)

For the simpler Abelian case, we have:

E⃗ = −∂t A⃗ − ∂⃗ A0 = −∂t
⃗̂A − ∂⃗ Â0 ≡ E⃗dy + E⃗st (14)

We call E⃗dy ≡ −∂t
⃗̂A the “dynamic” field and E⃗st ≡ −∂⃗ Â0 the “stat-

ic” field. [We apologize that the word “static” is not very perti-
nent, because −∂⃗ Â0 can as well be time-dependent. By “static”
we mean exactly “can-be-static”, i.e., −∂⃗ Â0 can survive for a static

configuration, while the “dynamic” field −∂t
⃗̂A cannot. This nota-

tion will prove quite illuminating for the non-Abelian field.] As
promised, E⃗dy and E⃗st are separately gauge-invariant, since they

are constructed with the gauge-invariant physical fields ⃗̂A and Â0,
respectively. Now the “static” and “dynamic” terms of the photon
spin S⃗γ can be defined as

S⃗st
γ ≡

∫
d3x E⃗st × ⃗̂A =

∫
d3x

(
−∂⃗ Â0) × ⃗̂A (15a)

S⃗dy
γ ≡

∫
d3x E⃗dy × ⃗̂A =

∫
d3x (−∂t

⃗̂A) × ⃗̂A (15b)

Similarly, we can define “static” and “dynamic” terms of the
photon orbital angular momentum:

L⃗st
γ ≡

∫
d3x x⃗ × Est

i ∂⃗ Âi =
∫

d3x x⃗ ×
(
−∂i Â0)∂⃗ Âi (16a)

L⃗dy
γ ≡

∫
d3x x⃗ × Edy

i ∂⃗ Âi =
∫

d3x x⃗ × (−∂t Âi)∂⃗ Âi (16b)

The “static” terms S⃗st
γ and L⃗st

γ are not zero individually, but a

little algebra shows that the sum S⃗st
γ + L⃗st

γ always vanishes:

S⃗st
γ =

∫
d3x

(
−∂⃗ Â0) × ⃗̂A =

∫
d3x Â0∂⃗ × ⃗̂A (17a)

L⃗st
γ =

∫
d3x

(
−∂i Â0)x⃗ × ∂⃗ Âi

=
∫

d3x Â0(∂i x⃗) × ∂⃗ Âi +
∫

d3x x⃗ × ∂⃗(∂i Âi)

= −
∫

d3x Â0∂⃗ × ⃗̂A = − S⃗st
γ (17b)

Thus, it is not very meaningful to count S⃗st
γ as part of the

photon spin and L⃗st
γ = − S⃗st

γ as part of the photon orbital angular
momentum, and we can wisely subtract these two canceling terms
altogether from S⃗γ and L⃗γ . (This cancelation is also discussed by
Wakamatsu [3].)

It is worthwhile to remark that the vanishing of “static” angu-
lar momentum is masked if one defines the total photon angular
momentum as

∫
d3x x⃗ × (E⃗ × B⃗). Similarly, by defining photon mo-

mentum as
∫

d3x E⃗ × B⃗ , ones does not see the vanishing of a “stat-
ic” term either, which however shows up clearly if one defines the
photon momentum as P⃗γ ≡

∫
d3x Ei ∂⃗ Âi :

P⃗ st
γ =

∫
d3x Est

i ∂⃗ Âi =
∫

d3x
(
−∂i Â0)∂⃗ Âi

=
∫

d3x Â0∂⃗(∂i Âi) = 0 (18)

Separation of the gluon spin S⃗ g , or essentially the non-Abelian
color electric field E⃗ , is much more involved due to non-linearity,
but a satisfactory separation does exist:

E⃗ = −∂t A⃗ − ∇⃗ A0 + ig
[

A⃗, A0]

= −D̄t
⃗̂A − ⃗̄D Â0 + ig

[ ⃗̂A, Â0]

≡ E⃗dy + E⃗st + E⃗nl (19)

In arranging the first line into the second line, we have used the
pure-gauge condition ⃗̄E ≡ −∂t

⃗̄A − ∂⃗ Ā0 + ig[ ⃗̄A, Ā0] = 0. In addition

to the “dynamic” term E⃗dy ≡ −D̄t
⃗̂A and the “static” term E⃗st ≡

− ⃗̄D Â0, we find now a non-linear term E⃗nl ≡ ig[ ⃗̂A, Â0]. All these
three terms are individually gauge-covariant. In consequence, we
can separate the gluon spin S⃗ g into three gauge-invariant parts:

S⃗st
g ≡

∫
d3x E⃗st × ⃗̂A =

∫
d3x

(
− ⃗̄D Â0) × ⃗̂A (20a)

S⃗dy
g ≡

∫
d3x E⃗dy × ⃗̂A =

∫
d3x (−D̄t

⃗̂A) × ⃗̂A (20b)

S⃗nl
g ≡

∫
d3x E⃗nl × ⃗̂A =

∫
d3x ig

[ ⃗̂A, Â0] × ⃗̂A (20c)

A similar gauge-invariant separation applies to the gluon orbital
angular momentum:

L⃗st
g ≡

∫
d3x x⃗ × Est

i
⃗̄D Âi =

∫
d3x x⃗ ×

(
−D̄i Â0) ⃗̄D Âi (21a)

L⃗dy
g ≡

∫
d3x x⃗ × Edy

i
⃗̄D Âi =

∫
d3x x⃗ × (−D̄t Âi)

⃗̄D Âi (21b)

L⃗nl
g ≡

∫
d3x x⃗ × Enl

i
⃗̄D Âi =

∫
d3x x⃗ × ig[ Âi, Â0] ⃗̄D Âi (21c)

Although the expressions are much more complicated, we can
still prove that the total “static” angular momentum S⃗st

g + L⃗st
g van-

ishes identically. The easiest way to see this is to work in the
Coulomb gauge, which gives Āµ = 0 and Âµ = Aµ , thus S⃗st

g and
L⃗st

g reduce to the same expressions as for the photon. Then, the
same procedure as in Eqs. (17) shows ( S⃗st

g + L⃗st
g )∂⃗· A⃗=0 = 0. But

since ( S⃗st
g + L⃗st

g ) is gauge invariant, it is identically zero in any
gauge. The same reasoning shows that the “static” gluon momen-

tum P⃗ st
g ≡

∫
d3x Est

i
⃗̄D Âi ≡ 0. But again, the vanishing of “static”

gluon momentum and angular momentum are masked if they are
defined through the Poynting vector E⃗ × B⃗ .

Discarding the not-so-meaningful static term, we resume the 1-
loop calculation and see how much “essential gluon spin” is left in
a parent quark state. At 1-loop order the non-linear term S⃗nl

g does

not contribute. The remaining “dynamic gluon spin” S⃗dy
g is found

to contribute

Sdy
g ≡ ⟨pσ |

∫
d3x

(
E⃗dy × ⃗̂A

)
3|pσ ⟩

= ⟨pσ |
∫

d3x
(

E⃗dy × A⃗
)

3|pσ ⟩∂⃗· A⃗=0

= 1
5

S g = 1
9
!g = σ · 2

9
αs

π
ln

Q 2

m2 (22)

Quite remarkably, we see that Sdy
g is largely negligible com-

pared to S g or !g , e.g., the specific renormalization found by
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approaches Aµ at infinity. Note that Aµ or more precisely its pure-
gauge part Āµ may not vanish at infinity even if Fµν does. How-
ever, if they do (as typically obtains in perturbative calculations),
the expressions for Âµ and Āµ can be greatly simplified:

Âµ = 1

∂⃗2
∂i(∂i Aµ − ∂µ Ai) = Aµ − ∂µ

1

∂⃗2
∂i Ai (5a)

Āµ = ∂µ
1

∂⃗2
∂i Ai (5b)

For the non-Abelian gluon field, Aµ ≡ Aa
µT a , with T a the color

matrix, the defining equations for Âµ and Āµ are most elegantly
arranged as [2,9]

F̄µν ≡ ∂µ Āν − ∂ν Āµ + ig[ Āµ, Āν ] = 0 (6a)

D̄i Âi ≡ ∂i Âi + ig[ Āi, Âi] = 0 (6b)

That is, Āµ is still a pure gauge, and the gauge covariant spa-
tial divergence of Âµ vanishes. The physical field, Âµ (like the
non-Abelian field strength Fµν ), is now gauge-covariant instead of
gauge-invariant, and has to be solved perturbatively. The leading
term is the same as in Eq. (1). At next-to-leading order, the ex-
pression is [9]:

Âµ = 1

∂⃗2
∂i F iµ + ig

1

∂⃗2

{[
1

∂⃗2
∂k Fki,∂i

1

∂⃗2
∂k Fkµ − ∂i Aµ

]

− ∂i

[
Ai,

1

∂⃗2
∂k Fkµ

]
+ ∂µ

[
1

∂⃗2
∂k Fki, Ai

]}
+ O

(
g2) (7)

This expression only requires that Fµν vanish fast enough at infin-
ity. If Aµ does also, then the expressions for Âµ and Āµ simplify
to

Âµ = Aµ − Āµ (8a)

Āµ = ∂µ
1

∂⃗2
∂i Ai + ig

{
∂µ

1

∂⃗2

[
∂i

1

∂⃗2
∂k Ak, Ai

]

− ∂i
1

∂⃗2

[
∂i

1

∂⃗2
∂k Ak,∂µ

1

∂⃗2
∂k Ak

]}
+ O

(
g2) (8b)

Separation of the physical and gauge degrees of freedom in Aµ

can be of great use and convenience. A significant example is the
gauge-invariant, complete decomposition of the total QCD angular
momentum operator into four terms [1,2]:

J⃗QCD =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei
⃗̄D Âi

≡ S⃗q + L⃗q + S⃗ g + L⃗ g (9)

Here D̄µ ≡ ∂µ + ig Āµ is the pure-gauge covariant derivative for
the quark field, and D̄µ ≡ ∂µ + ig[ Āµ, ] is the pure-gauge covariant
derivative for a field in the adjoint representation. For an Abelian
theory, Âµ is gauge invariant and does not need a covariant deriva-
tive, so the decomposition of the total QED angular momentum
operator is a little simpler (in the sector of photon orbital angular
momentum):

J⃗QED =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei ∂⃗ Âi

≡ S⃗e + L⃗e + S⃗γ + L⃗γ (10)

[A remarkable (and somewhat mysterious) fact is that using the
ordinary derivative can also lead to a gauge-invariant gluon orbital
angular momentum, which however dictates a very specific defini-
tion of Âµ . See Ref. [1] for a detailed discussion.]

Note that Eqs. (9) and (10) provide operational decompositions:
Given the explicit expressions of Âµ and Āµ , we can straight-
forwardly make calculations with the operators in Eqs. (9) and
(10). We will concentrate here on the gauge-invariant “gluon spin”,
S⃗ g . In comparison, the widely discussed “gluon polarization” &g ,
which is defined through gauge-invariant polarized gluon distri-
bution function, reduces to the gauge-dependent local operator∫

d3x E⃗ × A⃗ only in the light-cone gauge [10]. The aim of this
Letter is to investigate the properties of S⃗ g , and to make a quanti-
tative comparison with &g . To make the conclusion as concrete as
possible, we take the simplest non-trivial example of a 1-loop cal-
culation in an on-shell quark state. As we will show, S g is typically
much smaller than &g . Moreover, a remarkable and physically ap-
pealing feature of our gauge-invariant definitions in Eq. (9) is that
the “static field” does not contribute to the total gluon angular an-
gular momentum, S g + Lg . [The same feature holds for the total
photon angular momentum, Sγ + Lγ .] If the static pieces are sub-
tracted altogether from S g and Lg (which leaves the sum, S g + Lg ,
unaltered), the remaining “dynamic” gluon spin is only 1

9 of &g .
Since S⃗ g and L⃗ g are explicitly gauge-invariant operators, the

calculation can be performed in any gauge for convenience. The
covariant gauge has the simplest Feynman rules. But for our pur-
pose the Coulomb gauge ∂⃗ · A⃗ = 0 is the most convenient: Eqs. (8)
indicate that as ∂⃗ · A⃗, we have Āµ = 0 and Âµ = Aµ in this gauge.

For the 1-loop calculation of the gluon matrix element in a
quark state, the gluon field behaves like eight independent Abelian
fields. Consider a quark state, |pσ ⟩, with momentum p and polar-
ization σ along the third axis. At 1-loop order one finds [11]

&g ≡ ⟨pσ |
∫

d3x (E⃗ × A⃗)3|pσ ⟩A+=0 = σ · 2
αs

π
ln

Q 2

m2 (11)

where Q 2 and m2 are the ultraviolet and infrared cutoffs, respec-
tively. For comparison, our gauge-invariant “gluon spin” leads to

S g ≡ ⟨pσ |
∫

d3x (E⃗ × ⃗̂A)3|pσ ⟩

= ⟨pσ |
∫

d3x (E⃗ × A⃗)3|pσ ⟩∂⃗· A⃗=0 = 5
9
&g (12)

Here we have used the important and convenient relation that

the matrix element of the gauge-invariant operator E⃗ × ⃗̂A (in any
gauge) is the same as that of the gauge-dependent operator E⃗ × A⃗
in the Coulomb gauge. (The reader should keep in mind that &g
has a local operator expression only in light-cone gauge, whereas
we have only chosen to evaluate our gauge-invariant operator in
Coulomb gauge.)

We see that S g is much smaller than &g . The reason can be
traced to the fact that S g is constructed solely with the “phys-
ical” gluon field, while &g is calculated in the light-cone gauge
in which Aµ contains both physical and pure-gauge components;
thus &g includes a non-physical pure-gauge contribution. This
suggests that S g is a more physical and reasonable definition of
the gluon spin than &g . And indeed, &g leads to a spuriously large
gluon content in a parent quark state. A rather heuristic way to see
this is by renormalizing the divergent S g and &g in a very specific
way, namely, by choosing the ultraviolet cutoff Q 2 to be the same
as the scale for the running coupling constant:

αs
(

Q 2) = g2(Q 2)

4π
= 12π

(33 − 2n f ) ln(Q 2/Λ2)
(13)

Manipulating the gluon spin 



Beyond the static approximation 



nontrivial gluonic content of the nucleon. Analogously, if a
sizable ~J0g were found in the Ji scheme [3],

~J QCD ¼
Z

d3xc y
q
1

2
~!c q þ

Z
d3x ~x# c y

q
1

i
~Dc q

þ
Z

d3x ~x# ð ~E# ~BÞ

& ~Sq þ ~L0
q þ ~J0g; (23)

it may actually come from the spurious gluon angular

momentum
R
d3x ~x# c y

q ~Ac q, and so may also not imply

a significant gluon content in the nucleon.
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[4] X. S. Chen, X. F. Lü, W.M. Sun, F. Wang, and T.

Goldman, Phys. Rev. Lett. 100, 232002 (2008).
[5] X. S. Chen, W.M. Sun, X. F. Lü, F. Wang, and T.
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approaches Aµ at infinity. Note that Aµ or more precisely its pure-
gauge part Āµ may not vanish at infinity even if Fµν does. How-
ever, if they do (as typically obtains in perturbative calculations),
the expressions for Âµ and Āµ can be greatly simplified:

Âµ = 1

∂⃗2
∂i(∂i Aµ − ∂µ Ai) = Aµ − ∂µ

1

∂⃗2
∂i Ai (5a)

Āµ = ∂µ
1

∂⃗2
∂i Ai (5b)

For the non-Abelian gluon field, Aµ ≡ Aa
µT a , with T a the color

matrix, the defining equations for Âµ and Āµ are most elegantly
arranged as [2,9]

F̄µν ≡ ∂µ Āν − ∂ν Āµ + ig[ Āµ, Āν ] = 0 (6a)

D̄i Âi ≡ ∂i Âi + ig[ Āi, Âi] = 0 (6b)

That is, Āµ is still a pure gauge, and the gauge covariant spa-
tial divergence of Âµ vanishes. The physical field, Âµ (like the
non-Abelian field strength Fµν ), is now gauge-covariant instead of
gauge-invariant, and has to be solved perturbatively. The leading
term is the same as in Eq. (1). At next-to-leading order, the ex-
pression is [9]:

Âµ = 1

∂⃗2
∂i F iµ + ig

1

∂⃗2

{[
1

∂⃗2
∂k Fki,∂i

1

∂⃗2
∂k Fkµ − ∂i Aµ

]

− ∂i

[
Ai,

1

∂⃗2
∂k Fkµ

]
+ ∂µ

[
1

∂⃗2
∂k Fki, Ai

]}
+ O

(
g2) (7)

This expression only requires that Fµν vanish fast enough at infin-
ity. If Aµ does also, then the expressions for Âµ and Āµ simplify
to

Âµ = Aµ − Āµ (8a)

Āµ = ∂µ
1

∂⃗2
∂i Ai + ig

{
∂µ

1

∂⃗2

[
∂i

1

∂⃗2
∂k Ak, Ai

]

− ∂i
1

∂⃗2

[
∂i

1

∂⃗2
∂k Ak,∂µ

1

∂⃗2
∂k Ak

]}
+ O

(
g2) (8b)

Separation of the physical and gauge degrees of freedom in Aµ

can be of great use and convenience. A significant example is the
gauge-invariant, complete decomposition of the total QCD angular
momentum operator into four terms [1,2]:

J⃗QCD =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei
⃗̄D Âi

≡ S⃗q + L⃗q + S⃗ g + L⃗ g (9)

Here D̄µ ≡ ∂µ + ig Āµ is the pure-gauge covariant derivative for
the quark field, and D̄µ ≡ ∂µ + ig[ Āµ, ] is the pure-gauge covariant
derivative for a field in the adjoint representation. For an Abelian
theory, Âµ is gauge invariant and does not need a covariant deriva-
tive, so the decomposition of the total QED angular momentum
operator is a little simpler (in the sector of photon orbital angular
momentum):

J⃗QED =
∫

d3xψ† 1
2
Σ⃗ψ +

∫
d3x x⃗ × ψ† 1

i
⃗̄Dψ

+
∫

d3x E⃗ × ⃗̂A +
∫

d3x x⃗ × Ei ∂⃗ Âi

≡ S⃗e + L⃗e + S⃗γ + L⃗γ (10)

[A remarkable (and somewhat mysterious) fact is that using the
ordinary derivative can also lead to a gauge-invariant gluon orbital
angular momentum, which however dictates a very specific defini-
tion of Âµ . See Ref. [1] for a detailed discussion.]

Note that Eqs. (9) and (10) provide operational decompositions:
Given the explicit expressions of Âµ and Āµ , we can straight-
forwardly make calculations with the operators in Eqs. (9) and
(10). We will concentrate here on the gauge-invariant “gluon spin”,
S⃗ g . In comparison, the widely discussed “gluon polarization” &g ,
which is defined through gauge-invariant polarized gluon distri-
bution function, reduces to the gauge-dependent local operator∫

d3x E⃗ × A⃗ only in the light-cone gauge [10]. The aim of this
Letter is to investigate the properties of S⃗ g , and to make a quanti-
tative comparison with &g . To make the conclusion as concrete as
possible, we take the simplest non-trivial example of a 1-loop cal-
culation in an on-shell quark state. As we will show, S g is typically
much smaller than &g . Moreover, a remarkable and physically ap-
pealing feature of our gauge-invariant definitions in Eq. (9) is that
the “static field” does not contribute to the total gluon angular an-
gular momentum, S g + Lg . [The same feature holds for the total
photon angular momentum, Sγ + Lγ .] If the static pieces are sub-
tracted altogether from S g and Lg (which leaves the sum, S g + Lg ,
unaltered), the remaining “dynamic” gluon spin is only 1

9 of &g .
Since S⃗ g and L⃗ g are explicitly gauge-invariant operators, the

calculation can be performed in any gauge for convenience. The
covariant gauge has the simplest Feynman rules. But for our pur-
pose the Coulomb gauge ∂⃗ · A⃗ = 0 is the most convenient: Eqs. (8)
indicate that as ∂⃗ · A⃗, we have Āµ = 0 and Âµ = Aµ in this gauge.

For the 1-loop calculation of the gluon matrix element in a
quark state, the gluon field behaves like eight independent Abelian
fields. Consider a quark state, |pσ ⟩, with momentum p and polar-
ization σ along the third axis. At 1-loop order one finds [11]

&g ≡ ⟨pσ |
∫

d3x (E⃗ × A⃗)3|pσ ⟩A+=0 = σ · 2
αs

π
ln

Q 2

m2 (11)

where Q 2 and m2 are the ultraviolet and infrared cutoffs, respec-
tively. For comparison, our gauge-invariant “gluon spin” leads to

S g ≡ ⟨pσ |
∫

d3x (E⃗ × ⃗̂A)3|pσ ⟩

= ⟨pσ |
∫

d3x (E⃗ × A⃗)3|pσ ⟩∂⃗· A⃗=0 = 5
9
&g (12)

Here we have used the important and convenient relation that

the matrix element of the gauge-invariant operator E⃗ × ⃗̂A (in any
gauge) is the same as that of the gauge-dependent operator E⃗ × A⃗
in the Coulomb gauge. (The reader should keep in mind that &g
has a local operator expression only in light-cone gauge, whereas
we have only chosen to evaluate our gauge-invariant operator in
Coulomb gauge.)

We see that S g is much smaller than &g . The reason can be
traced to the fact that S g is constructed solely with the “phys-
ical” gluon field, while &g is calculated in the light-cone gauge
in which Aµ contains both physical and pure-gauge components;
thus &g includes a non-physical pure-gauge contribution. This
suggests that S g is a more physical and reasonable definition of
the gluon spin than &g . And indeed, &g leads to a spuriously large
gluon content in a parent quark state. A rather heuristic way to see
this is by renormalizing the divergent S g and &g in a very specific
way, namely, by choosing the ultraviolet cutoff Q 2 to be the same
as the scale for the running coupling constant:

αs
(

Q 2) = g2(Q 2)

4π
= 12π

(33 − 2n f ) ln(Q 2/Λ2)
(13)
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The	
  Experimental	
  answer:	
  	
  
two	
  kinds	
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  angular	
  momenta	
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  tensor	
  

Surprising: none is satisfactory! 
  

MC
µνλ = xµTC

λν − xvTC
λµ + ∂L

∂(∂λφa )
Σab

µνφb

M?
µνλ = xµTsymm

λν − xvTsymm
λµ

  

Canonical: TC
µν (x) =

∂L(φi ,∂µφi )

∂(∂µφi )
∂νφi − gµν L

Symmetric: Tsymm
µν (x) = 1

−g

δ I M

δ gµν (x)
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If a quantum wave is in mutual eigenstates 
of more than one observables, then the 

associated currents must be proportional 
to each other 

   

E.g. :  
!
jE ∝
!
jpi

∝
!
jsi
∝
!
jq

Ĥψ = Eψ , P̂iψ = piψ , Ŝiψ = siψ ,Q̂ψ = qψ
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The	
  Symmetric	
  Tab	
  stands	
  no	
  chance! 

But the canonical Tab	
  is not fully OK 

  

TC
µν (x) =

∂L(φa ,∂µφa )
∂(∂µφa )

∂νφa − gµν L

TC
i0 =

∂L(φa ,∂µφa )
∂(∂iφa )

∂0φa ,   TC
ii(x) =

∂L(φa ,∂µφa )
∂(∂iφa )

∂iφa + L
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An	
  improved	
  Tab:	
  free	
  field	
  

   

Trevised
µν =

∂L(φa ,∂µφa )
∂(∂µφa )

!
∂νφa ,  

!
∂ν ≡ 1

2

"
∂ν −
#
∂ν( )

TC
µν =

∂L(φa ,∂µφa )
∂(∂µφa )

∂νφa − gµν L

   

Trevised
µν = −F µρ

!
∂ν Aρ

TC
µν = −F µρ ∂ν Aρ +

1
4

gµν F 2

Tsymm
µν = −F µρ Fν

  ρ +
1
4

gµν F 2

E.g. photon 
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  Proof	
  of	
  validness	
  (general	
  free	
  fields)	
  

  

L(φa ,∂µφa ) is quadratic in and ∂µφ  (φ,  φ *independent)

= ∑a

1
2

∂L
∂φa

φa +
∂L

∂(∂ρφa )
∂ρφa

⎛

⎝
⎜

⎞

⎠
⎟ = ∑a

1
2
∂ρ

∂L
∂(∂ρφa )

φa

⎛

⎝
⎜

⎞

⎠
⎟

TC
µν = ∂L

∂(∂µφa )
∂νφa − gµν L,   Trevised

µν = TC
µν + ∂ρ B[ρµ]ν

B[ρµ]ν = ∑a

1
2
∂ρ gµν ∂L

∂(∂ρφa )
φa − g ρν ∂L

∂(∂µφa )
φa

⎛

⎝
⎜

⎞

⎠
⎟
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  The	
  interac/ng	
  fields:	
  scalar	
  case	
  

   

Iφ = ∫ d 4x −g (−1
2

DµφDµφ + 1
8

Rφ 2 )

→ Tnew
µν =

∂L(φa ,∂µφa )
∂(∂µφa )

!
∂νφa

  
T µν (x) = 1

−g

δ I M

δ gµν (x)

This	
  gives	
  a	
  gravita/onal	
  theory
	
  different	
  from	
  Einstein’s	
  GR 
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Trouble	
  with	
  the	
  Angular	
  momentum	
  tensor	
  

  

M µνλ = xµTsymm
λν − xvTsymm

λµ

MC
µνλ = xµTC

λν − xvTC
λµ + ∂L

∂(∂λφa )
Σab

µνφb

Mrevised ?
µνλ    = xµTrevised

λν   − xvTrevised
λµ    + ∂L

∂(∂λφa )
Σab

µνφb

+ 1
2

gλν ∂L
∂(∂µφa )

φa −
1
2

gλµ ∂L
∂(∂νφa )

φa

Our	
  trick	
  applies	
  to	
  longitudinal	
  spin	
  flux	
  only,	
  but	
  not	
  to
	
  transverse	
  flux	
  of	
  angular	
  momentum! 



Conclusion:  

So far there exists no 
satisfactory expression of 

angular momentum tensor, 
even for a free field! 

And thus no satisfactory way 
of spin decomposition. 

27 Thank	
  you! 


