Recent Results on Proton Helicity Structure Studies from PHENIX

Chong KIM
University of California at Riverside
Pacific Spin 2015, Academia Sinica
Oct. 7, 2015

for the PHENIX collaboration
• RHIC Spin program
 - PHENIX and STAR
 - Longitudinal and Transverse
 - Achievements, Near term projections, and Future opportunities
Outline

• Introduction
 - Physics motivations
 - RHIC
 - PHENIX detectors
 - Recent longitudinal spin runs

• Proton helicity structure studies
 - Polarized gluon distributions (ΔG)
 - Polarized light sea quark distributions (Δq̅)

• Summary and Outlook
Introduction Physics motivations

- It’s not a big secret these days...

 \[- S_p = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z \]

- PHENIX aims: both longitudinal spin structure and transverse spin phenomena

This talk

Tomorrow 11:30 AM by Dr. Yuji Goto
Introduction

Physics motivations

\[S_p = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z \]

- **ΔΣ** = (Δq + Δ\bar{q})
 - (Δq + Δ\bar{q}):
 - well constrained thanks to DIS results
 - Δ\bar{q}:
 - large uncertainty from fragmentation processes
 - \(\rightarrow \) measure \(A_L \) by \(W \) decay leptons

- **ΔG**
 - Largely unconstrained
 - \(\rightarrow \) measure \(A_{LL} \) by various probes

This talk mainly presents Run13 highlights
RHIC @ Brookhaven Lab., NY

- Polarized $p + p$ at $\sqrt{s} = 62.5 - 510$ (GeV)
- max. $\langle P \rangle$ (avg. beam polarization) $\approx 60\%$
Introduction PHENIX detectors

- **PHENIX detector**
 - High rate capability/granularity, Good mass resolution/pID, and Rare event triggers
 - Recent upgrades: forward muon trigger (2013) and inner tracking (VTX (2011) / FVTX (2012))
• **Central Arms** (midrapidity)
 - $|\eta| < 0.35$, $\Delta \phi = \frac{\pi}{2} \times 2$
 - VTX (from 2011)
 - Tracking: DC, PC
 - pID: RICH, ToF
 - EMCal: PbSc, PbGl

• **Muon Arms** (forward rapidity)
 - $1.2 < \eta < 2.2$ (S) or 2.4 (N), $\Delta \phi = 2\pi$
 - FVTX (from 2012)
 - Tracking: MuTr
 - pID: MuID, RPCs (from 2011/2012)

• **MPCs** (forward EMCal)
 - $3.1 < |\eta| < 3.8$, $\Delta \phi = 2\pi$
Introduction Recent longitudinal spin runs

<table>
<thead>
<tr>
<th>Year</th>
<th>\sqrt{s} (GeV)</th>
<th>Int. L (pb$^{-1}$)</th>
<th>$\langle P \rangle$ (%)</th>
<th>FoM1 ($L \cdot \langle P \rangle^2$)</th>
<th>FoM2 ($L \cdot \langle P \rangle^4$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>500</td>
<td>14</td>
<td>33 / 36</td>
<td>1.66</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>15.6</td>
<td>56 / 57</td>
<td>4.98</td>
<td>1.59</td>
</tr>
<tr>
<td>11</td>
<td>500</td>
<td>27.6</td>
<td>48 / 48</td>
<td>6.36</td>
<td>1.47</td>
</tr>
<tr>
<td>12</td>
<td>510</td>
<td>49.6</td>
<td>50.3 / 53.5</td>
<td>13.35</td>
<td>3.59</td>
</tr>
<tr>
<td>13</td>
<td>510</td>
<td>242.1</td>
<td>50.5 / 55.4</td>
<td>67.73</td>
<td>18.95</td>
</tr>
</tbody>
</table>

* MinBias with wide (no) vertex at PHENIX

- $\text{FoM1} = L \cdot \langle P_B \rangle \cdot \langle P_Y \rangle \iff$ Single spin asymmetry (A_L) $\iff \Delta \bar{q}$
- $\text{FoM2} = L \cdot \langle P_B \rangle^2 \cdot \langle P_Y \rangle^2 \iff$ Double spin asymmetry (A_{LL}) $\iff \Delta G$
Polarized gluons (ΔG)

Observable: A_{LL}
ΔG Introduction

\[A_{LL} = \frac{\Delta \sigma}{\sigma} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \]

\[= \frac{\sum_{abf} (\Delta f_a \otimes \Delta f_b) \otimes \hat{\sigma}^{a+b \rightarrow h+X} \otimes D_f^h}{\sum_{abf} (f_a \otimes f_b) \otimes \hat{\sigma}^{a+b \rightarrow h+X} \otimes D_f^h} \]

- \(f(\Delta f) \): unpol (pol) PDF
- \(\hat{\sigma}(\Delta \hat{\sigma}) \): unpol (pol) partonic cross section
- \(D_f^h \): fragmentation function

Technically,

\[A_{LL} = \frac{1}{PBPY} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}} \]

- \(P \): avg. polarization of each beam
- \(N_{++} (N_{+-}) \): yields in same (opposite) helicity
- \(R \left(\frac{L_{++}}{L_{+-}} \right) \): relative luminosity

- **ΔG measurement at PHENIX:** via various probes
 - Midrapidity (Central Arms): γ, π⁰, π⁺⁻, η, heavy flavor decay leptons
 - Forward (MPC): electromagnetic clusters
ΔG \(\pi^0 @ \text{midrapidity (}|\eta| < 0.35|\) **

arXiv: 1501.01220

PHENIX: pp \(\rightarrow \pi^0 + X \) \(|\eta| < 0.35 \)

- Inclusive \(\pi^0 A_{LL} \) in Run 12-13 (Int. \(L = 20, 108 \text{ pb}^{-1} \)) \(pp \) 510 GeV
 - First observation of significant **non-zero** \(A_{LL} \) (\(\Delta G \)) in hadron production
 * of course, let’s not forget ‘first non-zero \(A_{LL} \)’ was observed in **STAR jet** measurements
 - Extended Bjorken x coverage down to \(\sim 0.01 \)
DIS + pp global pQCD fit (DSSV2014)

- DSSV2014 (DSSV* and New fit):
 - Included:
 - RHIC data for original DSSV (before Run 9)
 - New COMPASS (SI)DIS data sets
- \(\int_{0.05}^{1} dx \Delta g(x) \)
 - DSSV*: RHIC Run 9 data excluded
 - DSSV New fit: RHIC Run 9 data included
 - \(0.20 \pm 0.06 \) at 90% C.L.
 - LSS10p, DSSV, and NNPDF1.1 agree
- \(\int_{0.001}^{0.05} dx \Delta g(x) \)
 - Large uncertainty (no data points)
 - Upcoming forward data (next slide)
ΔG Other channels

- A_{LL} at forward rapidity ($3.1 < \eta < 3.9$):
 - Run 9 data (left) / Run 13 projection (right, analysis is underway)
 - π^0 abundant (> 70 %) EM clusters
 - Probes Bjorken x down to ~ 0.001
ΔG Other channels

- **π± (Charged pions)**
 - Sensitive to the sign of ΔG
 - Run 13 analysis is underway

- **π⁰ pairs**
 - Better Bjorken x determination
 - Run 9 analysis is underway
Other channels

Heavy flavor decay
- gg scat. dominated production

Forward J/ψ
- gg scat. dominated production
- Reach $\sim 2 - 3 \times 10^{-3}$ Bjorken x
ΔG What’s next?

Bin by Bin Δg fit: significant improvement expected

arXiv: 1501.01220
Polarized light sea quarks ($\Delta \tilde{q}$)

Observable: A_L
Δq

Introduction

\[A_L = \frac{\Delta \sigma}{\sigma} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

\[A_L^{W+} = \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)} \]

\[A_L^{W-} = \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)} \]

technically,

\[A_L^{W} = \frac{1}{P} \frac{N_+ - RN_-}{N_+ + RN_-} \]

- **P**: avg. polarization of each beam
- **N+ (N-)**: yields in same (opposite) helicity
- **R** (\(\frac{L^{++}}{L^{+-}}\)): relative luminosity

- **Δq** measurement at PHENIX: by W/Z decay leptons
 - Midrapidity (Central Arms): electrons
 - Forward (Muon Arms): muons
$\Delta \bar{q}$ $W^\pm \rightarrow l^\pm$ @ PHENIX

- $W^\pm \rightarrow e^\pm$ @ midrapidity
 - Central Arms ($|\eta| < 0.35$)
 - Distinct Jacobian peak

 Triggered by energy
 Momentum by energy
 Charge by tracking in B-field

- $W^\pm \rightarrow \mu^\pm$ @ forward rapidity
 - Muon Arms ($1.2 < |\eta| < 2.2$)
 - Suppressed/No Jacobian peak

 Triggered by momentum
 Momentum by tracking in B-field
 Charge by tracking in B-field
$\Delta\bar{q}$: $W^\pm \rightarrow e^\pm$ @ midrapidity ($|\eta| < 0.35$)

- $W \rightarrow e A_L$ in Run 11-13 (total Int. $L = 240 \text{ pb}^{-1}$) pp 500/510 GeV
 - Charge isolation + Gaussian process regression
$\Delta \bar{q}$ \(W^\pm \to e^\pm @ \text{midrapidity (}|\eta| < 0.35|\) \\

[Image of a graph showing the comparison between experimental data and theoretical calculations for e^+ and e^- in W^+ and W^- reactions.]

- $W \to e A_L$ in Run 11-13 pp 500/510 GeV
 - Probed Bjorken $x : \sim 0.16$
 - W^- suggests larger $\Delta \bar{u}$ contribution than theory in covered x range
$\Delta \bar{q}$ $W^\pm \rightarrow \mu^\pm$ @ forward rapidity ($1.2 < \eta < 2.2 / 2.4$)

- $W \rightarrow \mu A_L$ in Run 11-13 (Int. L = 27, 53, and 290 pb$^{-1}$) pp 500/510 GeV
 - Analysis challenges: BG abundance, p_T smearing, Limited acceptance...
 - Multivariate W likelihood based analysis
$\Delta \bar{q}$ \hspace{1em} $W^\pm \rightarrow \mu^\pm$ @ forward rapidity (1.2 < η < 2.2 / 2.4)

- \textbf{W} \rightarrow \mu \textbf{A}_L \text{ in Run 13 pp 510 GeV}
 - Cross section results agrees with calculations within large uncertainty
 - Still working on improving uncertainties:
 - improve S/BG, tracking alignment, dead map update...
\[\Delta \bar{q} \rightarrow W^\pm \rightarrow l^\pm \text{ projections} \]

arXiv: 1501.01220

- **DSSV++ projections with \(W \) data at RHIC**
 - Significant constraint is expected in anti-quark polarization
Summary and Outlook Helicity structure studies at PHENIX

• ΔG
 - Run 13 inclusive π^0 at $\sqrt{s} = 510$ GeV
 a. First non-zero A_{LL} observation in hadron production
 b. Extended Bjorken x constraint down to ~ 0.01
 - Upcoming forward π^0 rich EM clusters data: push x coverage down to ~ 0.001
 - Current DSSV14 fit: $0.20^{+0.06}_{-0.07}$ at 90 % C.L in $x > 0.05$
 a. Includes only RHIC Run 6-9 data at $\sqrt{s} = 62$ and 200 GeV
 b. Room for improvement: recent (after Run 9) results are not included yet!
 in addition, not only π^0 / jet, but also many other probes exist to help reduce systematic uncertainty of the fit

• $\Delta \bar{q}$
 - Run 11 – 13 by $W / Z \rightarrow$ leptons
 - larger $\Delta \bar{u}$ contribution: possibility of symmetry breaking between $\bar{u} \leftrightarrow \bar{d}$?
 - DSSV++ fit suggests significant constraint
Summary and Outlook

• Next?
 - PHENIX decommissions after Run 16
 - Transition to new detector system using the Babar solenoid
 - Upcoming Eletrcon-Ion Collider: back to DIS, but with much higher L and \sqrt{s}
If you’re interested -
all about upcoming Electron – Ion Collider (EIC)
Backup LO dominant partonic processes

LO helicity dependent double spin asymmetries for partonic reactions at RHIC

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Dom. partonic process</th>
<th>probes</th>
<th>LO Feynman diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p\bar{p} \rightarrow \pi + X$ [61, 62]</td>
<td>$g\bar{g} \rightarrow gg$</td>
<td>Δg</td>
<td>![Feynman diagram]</td>
</tr>
<tr>
<td></td>
<td>$g\bar{g} \rightarrow qg$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow \text{jet(s)} + X$ [71, 72]</td>
<td>$g\bar{g} \rightarrow gg$</td>
<td>Δg</td>
<td>(as above)</td>
</tr>
<tr>
<td></td>
<td>$g\bar{g} \rightarrow qg$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow \gamma + X$</td>
<td>$g\bar{g} \rightarrow \gamma q$</td>
<td>Δg</td>
<td>![Feynman diagram]</td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow \gamma + \text{jet} + X$</td>
<td>$g\bar{g} \rightarrow \gamma q$</td>
<td>Δg</td>
<td>![Feynman diagram]</td>
</tr>
<tr>
<td></td>
<td>$g\bar{g} \rightarrow \gamma \gamma$</td>
<td>$\Delta q, \Delta \bar{q}$</td>
<td>![Feynman diagram]</td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow DX, BX$ [77]</td>
<td>$g\bar{g} \rightarrow c\bar{c}, b\bar{b}$</td>
<td>Δg</td>
<td>![Feynman diagram]</td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow \mu^+\mu^- X$ (Drell-Yan) [78, 79, 80]</td>
<td>$q\bar{q} \rightarrow \gamma^* \rightarrow \mu^+\mu^-$</td>
<td>$\Delta q, \Delta \bar{q}$</td>
<td>![Feynman diagram]</td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow (Z^0, W^\pm) X$ [78]</td>
<td>$q\bar{q} \rightarrow Z^0, q\bar{q} \rightarrow W^\pm$</td>
<td>$\Delta q, \Delta \bar{q}$</td>
<td>![Feynman diagram]</td>
</tr>
<tr>
<td>$p\bar{p} \rightarrow (Z^0, W^\pm) X$</td>
<td>$q\bar{q} \rightarrow W^\pm, q\bar{q} \rightarrow W^\pm$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Inclusive π^0 analysis**
 - Charge veto (θ_{cv}) + Time of flight + Relative Luminosity correction + Background asymmetry correction (by background sampling)
Backup \(\pi^0 \) analysis results – PHENIX/STAR
DIS + pp global pQCD fit (DSSV2014) – $x \Delta g$ vs. x

- DSSV2014 (DSSV* and New fit):
 - Included:
 RHIC data for original DSSV (before Run 9)
 New COMPASS (SI)DIS data sets
Backup \(\pi^0 \) abundance in forward EM clusters

- MC simulation for \(\sqrt{s} = 200 \text{ GeV} \) with full MPC
 - Kinematic cuts applied
Backup W partonic process

\[A_{L}^{W^+} = \frac{u_{-}(x_1)d_{+}(x_2) - u_{-}(x_1)d_{+}(x_2)}{u_{-}(x_1)d_{+}(x_2) + u_{+}(x_1)d_{+}(x_2)} \]

\(\triangleq 1. \Delta u \text{ is being probed} \)

\[A_{L}^{W^+} = \frac{d_{+}(x_1)u_{-}(x_2) - d_{+}(x_1)u_{-}(x_2)}{d_{+}(x_1)u_{-}(x_2) + d_{-}(x_1)u_{-}(x_2)} \]

\(\triangleq 2. \Delta \bar{d} \text{ is being probed} \)
Backup W kinematic coverage
Backup W kinematics in PHENIX acceptance
Backup $W \rightarrow \mu$ muonic processes

P_T distributions μ^-

P_T distributions μ^+

P_T spectrum (stacked) μ^-

P_T spectrum (stacked) μ^+
Backup $W \rightarrow \mu$ hadronic processes
Backup $W \rightarrow \mu \text{S/BG extraction by unbinned max. likelihood fit}$