Research Program towards the first observation of neutrino-nucleus coherent scattering

Academia Sinica 中央研究院

Zaragoza, Spain

OUTLINE

- Reactor Neutrino Physics at Low Energy
 - Magnetic Moment Search
 - $\bar{\nu_e}N$ Coherent Scattering
- LEGe Prototype Measurements with Sources
- Background Level at Reactor & Underground Lab.
- Simulation Results
- Plans & Summary

$\bar{\nu_e}$ Magnetic Moment Search

- 1 kg HPGe detector at reactor 4712/1250 hours ON/OFF data.
- Background level \sim 1 cpd
- $\mu_{\nu} < 1.3 \times 10^{-10} \mu_B$ 90% C. L.
 [PRL 90, 2003]
- Improve analysis : combine ON/OFF spectrum before/after cut $\Rightarrow \mu_{\nu} < 1.0 \times 10^{-10} \mu_B$
- Solution \times 3 more data :
 expect $\rightarrow \mu_{\nu} < 0.8 \times 10^{-10} \mu_B$
- New detector : threshold ~ 500 eV $\Rightarrow \mu_{\nu} \rightarrow 2 \times 10^{-11} \mu_B$

Institute of Physics Academia Sinica

$\bar{\nu_e}$ at Low Energy

$$(\frac{d\sigma}{dt})_{MM} = \frac{\pi \alpha^2 \mu_{\nu}^2}{m_e^2} (\frac{1}{T} - \frac{1}{E_{\nu}})$$

- Low Energy $\rightarrow (d\sigma/dT)_{MM} >> (d\sigma/dT)_{SM}$ decouple bkg & unknown sources
- For $T << E_{\nu} \rightarrow d\sigma/dT$ depends on total flux $\phi\nu$ NOT shape of $\phi\nu(E_{\nu})$

$\bar{\nu_e}N$ Coherent Scattering

•
$$\nu + N \rightarrow \nu + N$$

• $(\frac{d\sigma}{dt})_{SM} = \frac{G_F^2 m_N}{4\pi} [Z(1 - 4sin^2 \theta_W) - N]^2 [1 - \frac{M_N T_N}{2E_\nu^2}]$
 $\rightarrow N^2$ enhancement

 \checkmark Low recoil energy : \sim 1.9 keV for $E_{\nu}=$ 8 MeV, Ge

- A fundamental neutrino interaction never been experimentally observed.
- A sensitive test to Standard Model.
- An important interaction/energy loss channel in astrophysics media.
- A promising new detection channel for neutrinos, without strict lower bound on E_{ν} & the channel for WIMP direct detection.
- Involves new energy range at low energy, many experimental challenges & much room to look for scientific surprises.

$\bar{\nu_e}$ Spectrum and Recoil e^- , N Spectrum

Quenching Factor

Quenching factor = 0.25, $\frac{\Delta E}{E} \sim 0.05$

- Take Q. F. = 0.25, extrapolate background to eV level signal/noise > 1 at 300 eV
- At threshold \sim 100 eV \Rightarrow 11 count day⁻¹ kg⁻¹
- Signal to noise ratio \sim 22

Academia Sinica

ULE-HPGe detector

ULE-HPGe

target mass 5 g

ULE-HPGe with anti-Compton detector

Calibration & Threshold

Source : 55 Fe(5.9 keV, 6.49 keV) and Ti(4.51 keV, 4.93 keV) :

nstitute of Physics Academia Sinica Extrapolate energy calibration to low energy

 \Rightarrow threshold ~ 100-200 eV. Need calibration in low energy to comfi rm this!

Kuo-Sheng Neutrino Lab

Nuclear Power Plant II: Reactor Building

Yangyang Underground Lab.(Y2L), Korea

9 700 m of rock \rightarrow Cosmic-rays level 5 order less.

Background Measurement at KS Lab. & Y2L

KS Lab. & Y2L give same background level.

- Background : $10 \times$ more then 1 kg detector.
- Active shielding at power plant is "nearly" as efficiency as underground lab.

Institute of Physics Academia Sinica

Simulation Result

nstitute of Physics Academia Sinica Attenuation length ~ 0.8 cm for E < 50 keV.
 ⇒ Deposit energy at the surface of detector.
 ⇒ Background rate ∝
 Surface area of detector.

- Compact & multi-array
 ⇒ good background
 suppression.
- 125×5 g detector with outer elements as veto
 10% of background rate of 1 kg detector in one pieces.

Plan : Quenching Factor Measurement

- Quenching Factor Measuremen of Ge at sub-keV range.
- Measure the Quenching Factor by using neutron beam at Institute of Atomic Energy, Beijing(CIAE).

WIMP Detection with ULE-HPGe Detector

• Low threshold \rightarrow sensitive to low mass region.

Summary

- physics goal :
 - $\bar{\nu_e}N$ coherent scattering experiment
 - Dark Matter experiment
- 5 g detector result :
 - \checkmark threshold \sim 100eV 200eV could be achieved.
 - $10 \times$ more background \leftarrow understood.
- 🍠 plans :
 - calibration at energy < 3 keV, e^- source generate X-rays from C, O.
 - \checkmark prototype study on multi-array 4×5 g detector on site.
 - Threshold with PSD studies.
 - quenching factor with neutron beam exp at CIAE.
- target : \sim 1 kg segmented ULE-HPGe detector

