Neutrino and Dark Matter Physics with an Ultra-Low-Energy Germanium Detector

H. B. Li 李浩斌 Academia Sinica 中央研究院

中華民國物理學會年會暨研究成果發表會物理教學及示範研討會

NSYSU, Kaohsiung

 $2005~{\rm Feb}~1$

Plan : ... Future Plan Summary

OUTLINE

 $\bar{\nu_e}N$ Coherent ...

OUTLINE

- ▶ $\bar{\nu_e}N$ Coherent Scattering
- LEGe Prototype Measurements with Sources
- Background Level at Exp. Site
- Plan : Quenching Factor Measurement
- Plan : Dark Matter Feasibility Studies
- Future Plans
- Summary

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector Calibration data Background ... Low Energy Noise Plan : ... Dark ... WIMP Plan : ... **Future Plan Summary**

A P A A A P A B B

$\bar{\nu_{\rm e}}N$ Coherent Scattering

Differential cross-section

 $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^-$ scattering :

$$(\frac{d\sigma}{dt})_{SM} = \frac{G_F^2 m_e}{2\pi} [(g_V - g_A)^2 + (g_V + g_A)^2 (1 - \frac{T}{E_\nu})^2 + (g_A^2 - g_V^2) \frac{m_e T}{E_\nu^2}]$$

$$(\frac{d\sigma}{dt})_{MM} = \frac{\pi \alpha^2 \mu_\nu^2}{m_e^2} (\frac{1}{T} - \frac{1}{E_\nu})$$

 $\bar{\nu_e}N \rightarrow \bar{\nu_e}N$ scattering :

$$(\frac{d\sigma}{dt})_{SM} = \frac{G_F^2 m_N}{4\pi} [Z(1 - 4sin^2 \theta_W) - N]^2 [1 - \frac{M_N T_N}{2E_\nu^2}]$$

$$\rightarrow N^2 \text{ enhancement}$$

$$\blacktriangleright \quad \left(\frac{d\sigma}{dt}\right)_{MM} = \frac{\pi \alpha^2 \mu_{\nu}^2}{m_e^2} Z^2 \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right)$$

[A. C. Dodd, et. al. Phys. Lett. B 266 434]

▶ Low recoil energy :
$$T_{max} = rac{2E_{
u}^{2}}{M_{N}+2E_{
u}}$$
 (~ 1.9 keV for $E_{
u} =$ 8 MeV, Ge)

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector Calibration data Background ... Low Energy Noise Plan : . . . Dark ... WIMP ... Plan : ... **Future Plan Summary**

.

$\bar{\nu_{e}}$ spectrum and Recoil $e^{-}\text{, N}$ Spectrum

OUTLINE $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : ... Dark ... WIMP Plan : ... **Future Plan Summary**

.

Quenching factor

Quenching factor = 0.25, $\frac{\Delta E}{E} \sim 0.05$

OUTLINE $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : ... Dark ... WIMP ... Plan : ... **Future Plan Summary**

At quenching factor = 0.25 : ~ 0.05 count day⁻¹keV⁻¹ at ~ 140 eV. P1 data with HPGe : 0.05 count day⁻¹keV⁻¹ below 10 keV for 5g.

*** * * * * * * * ***

Integral Spectrum

For quenching factor = 1.0, 0.25, 0.5

OUTLINE $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : . . . Dark ... WIMP ... Plan : ... **Future Plan Summary**

If threshold $\sim 100 \text{ eV} \rightarrow 0.055 \text{ count day}^{-1}$ (for 5 g, 11 count day⁻¹ for 1 kg) Signal to noise ratio in this energy range ~ 2.2

ULE-HPGe detector

ULE-HPGe

shielding 4π coverage

target mass : 5 g

ULE-HPGe with anti-compton

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : . . . Dark ... WIMP ... Plan : ... **Future Plan Summary**

Calibration data

Source : ${}^{55}\text{Fe}(5.9 \text{ keV}, 6.49 \text{ keV})$ and Ti(4.51 keV, 4.93 keV) :

Extrapolate energy calibration to low energy

 \rightarrow threshold \sim 60 eV.

Noise and signal are well seperater

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : . . . Dark ... WIMP ... Plan : ... **Future Plan Summary**

*** * * * * * * * ***

Background with ULE-HPGe

Compare period I HPGe data with ULE-HPGe :

After scale to mass, ULE-HPGe data is 1 order larger then period I data, with or without veto cut.

Even the cosmic trigger event rate is 1 order different.

- \rightarrow scale with surface?
- \rightarrow need further simulation to clarify.

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector Calibration data Background ... Low Energy Noise Plan : ... Dark ... WIMP ... Plan : ... **Future Plan Summary**

Low Energy Noise

Peak at 100 eV \rightarrow probably noise. \rightarrow a better PSD analysis is need.

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum ... **Quenching factor Integral Spectrum ULE-HPGe** detector Calibration data Background ... Low Energy Noise Plan : . . . Dark ... WIMP Plan : ... **Future Plan Summary**

Plan : Quenching Factor Measurement

Last Quenching Factor Measuremen of Ge is 30 years ago. Quenching Factor by using neutron beam at Institute of Atomic Energy, Beijing(CIAE).

OUTLINE $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector Calibration data Background ... Low Energy Noise Plan : . . . Dark ... WIMP ... Plan : ... **Future Plan Summary**

Dark Matter(WIMP) Experiment

WIMP detection :

- passible mass range 1 GeV 1 TeV.
- Typical nuclei recoil energy 0 100 keV.

• expected background rate ~ 1 cpd, or less.

Rate per recoil energy :

$$\frac{dR}{dE_r} = \frac{\rho \sigma_0 |F(q)|^2}{2m_W \mu^2} \int_{\upsilon > \sqrt{M_N E_r/2\mu^2}} \frac{f(\vec{\upsilon}, t)}{\upsilon} d^3 \upsilon.$$

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum ... **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : . . . Dark ... WIMP ... Plan : ... **Future Plan Summary**

WIMP detection with ULE-HPGe

Low threshold \rightarrow sensitive to low mass region.

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : . . . Dark ... WIMP ... Plan : . . . **Future Plan Summary**

Plan : Background Measurement at Y2L

Background measurement at Yang Yang Underground Lab(South Korea), supported by KIM group.

- with 5 g ULE-HPGe
- 700 m of rock.
- Cosmic-rays level \rightarrow 5 order less.

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : . . . Dark ... WIMP Plan : ... **Future Plan Summary**

Future Plan

- Quenching factor measurement at CIAE.
- Background measurement at Y2L.
- Install 4 \times 5 g array ULE-HPGe at power plant.
- ► Understand the background level → simulation and PSD studies
- Background and threshold studies with a 10 g ULE-HPGe.
- Calibration at < keV, e^- source generate X-rays from C, O.

OUTLINE $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector **Calibration data** Background ... Low Energy Noise Plan : . . . Dark ... WIMP ... Plan : ... **Future Plan Summary**

Summary

• explore potentials on $\bar{\nu_e}N$ coherent scattering \rightarrow open window on low mass WIMP studies.

- preliminary result :
 - \rightarrow threshold \sim 60eV 120eV could be achieved
 - \rightarrow background level is 10 \times of period I when scale by mass.
 - \rightarrow trying to understand high background rate.

plans :

- \rightarrow prototype study on multi-array 4 $\times 5$ g detector on site
- \rightarrow background level study on 10 g detector
- \rightarrow quenching factor with neutron beam exp at CIAE
- \rightarrow background measurement at Y2L
- target : 1 kg multi-array ULE-HPGe detector
 - \rightarrow Dark Matter experiment
 - $\rightarrow \bar{\nu_e}N$ coherent scattering experiment

OUTLINE

 $\bar{\nu_e}N$ Coherent ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum ULE-HPGe** detector Calibration data Background ... Low Energy Noise Plan : ... Dark ... WIMP Plan : ... **Future Plan Summary**