Neutrino Physics with Gemanium Detector

at the Kuo-Sheng reactor neutrino laboratory

H. B. Li 李浩斌 Academia Sinica 中央研究院

NTHU, Hsinchu

 $2004 \ {\rm Feb} \ 10$

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum** Calibration data **Summary**

OUTLINE

OUTLINE

- Neutrino magnetic moment : Overview
- Period I experiment : Magnetic moment results
- Period II, III status and plans
- $\bar{\nu_e}N$ coherent scattering
- LEGe prototype measurements with sources

Summary

OUTLINE $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data Summary**

$\bar{\nu_{\rm e}}$ Magnetic moment

$$\gamma = e \bar{u_2} \Gamma_\mu u_1 A^\mu$$

general form of
$$\Gamma_{\mu}$$

= $(q^2 \gamma_{\mu} - q_{\mu} q. \gamma) (R(q^2) + r(q^2) \gamma_5)$
+ $\sigma_{\mu\nu} q^{\nu} (D_{\mu}(q^2) + i D_E(q^2) \gamma_5)$

$$\sigma_{\mu\nu}q^{\nu}A^{\mu}\sim\mathbf{B}\cdot\boldsymbol{\sigma}$$

 D_{μ} : magnetic moment D_E : electric dipole moment

$$\mu_{eff}^2\equiv |D_\mu-D_E|^2$$

 $\mu_{\nu} \approx 10^{-10} \mu_B$

- \rightarrow consistent with solar data(before KamLand results)
- \rightarrow could be reached by present lab. exp.

OUTLINE $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum ... **Quenching factor Integral Spectrum Calibration data Summary**

Limits of neutrino magnetic moment

PDG quoted :

• Fit on SuperK data, $\mu_{
u} < 1.5 imes 10^{-10} \mu_B$ ($u_e e^-$ scattering)

\ddagger **Reactor** $\bar{\nu_e}e^-$ **scattering** :

- Savannah River(plastic scintillator), $\mu_{\nu} \approx 2 4 \times 10^{-10} \mu_B$
- Kurtchatoc(fluorocarbon scintillator), $\mu_{
 u} < 2.4{ imes}10^{-10}\mu_B$
- Rovno(Si(Li)), $\mu_{\nu} < 1.9 \times 10^{-10} \mu_B$
- $\mathsf{MUNU}(\mathsf{CF}^4)$, threshold ~ 1 MeV.

Astrophysics bound :

- $\nu_L \to \nu_R$ in SN1987A, $\mu_{\nu} < (0.01 0.04) \times 10^{-10} \mu_B$
- Constraint on nucleosynthesis, $\mu_{
 u} < 0.62 imes 10^{-10} \mu_B$
- Red giant luminosity, $\mu_{
 u} < 0.03 imes 10^{-10} \mu_B$
 - depend on neutrino mass/interaction.
 - depend on stellar model.

OUTLINE $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . **Sensitivity** Period II & III ... $\bar{\nu_{e}}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data Summary**

$$\bar{\nu_{\rm e}}{\rm e}^- \rightarrow \bar{\nu_{\rm e}}{\rm e}^-$$
 Scattering

$$\bar{\nu_e}e^- \rightarrow \bar{\nu_{\times}}e^-$$

Mesurement : Recoil energy of e^-

When recoil energy $T \rightarrow 0$

$$(\frac{d\sigma}{dT})_{SM} \to constant, \qquad (\frac{d\sigma}{dT})_{MM} \to \frac{1}{T}$$

OUTLINE

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum ... **Quenching factor Integral Spectrum Calibration data Summary**

KS Expt. : Period I Configuration

Period I : June 01 - April 02

Two detectors in inner target : HPGe and CsI(TI) array.

Inner targer flush with nitrogen.

OUTLINE

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . **Sensitivity** Period II & III ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum** Calibration data **Summary**

KS Expt. : Period I Detectors

ULB-HPGe [1 kg]

Csl(Tl) [46 kg]

Data : 600 Gb

FADC : 16 ch., 20 MHz, 8 bit $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum ... **Quenching factor Integral Spectrum** Calibration data Summary

OUTLINE

$\mu_{ u}$ with Reactor $ar{ u_{ m e}}$

$\bigstar \mu_{ u}$:

- parametrize possible $\nu_i{}^L \rightarrow \nu_j{}^R + \gamma$ vertices
- ▶ \exists both i = j "diagonal" & $i \neq j$ "transition" moments

★ <u>Experimental Probe</u> :

 $\blacktriangleright \quad {\rm Study} \ \bar{\nu_e} + e^- \rightarrow \bar{\nu_x} + e^-$

Focus on low recoil energy

- $\sigma_{\mu} \sim T^{-1}$
- decouples SM "backround"
- Look for excess in Reactor ON/OFF

[LE Reactor $\phi(\bar{\nu_e})$ not accurately known]

★ <u>Neutrino Radiative Decay :</u>

•
$$\sigma_{\mu}$$
 & Γ_{μ} related : $\Gamma = \frac{1}{2\pi} \frac{(\Delta m^2)^3}{m^3} \mu_{\nu}^2$

• real γ for same vertices

OUTLINE $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . **Sensitivity** Period II & III ... $\bar{\nu_{e}}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data**

Summary

$\mathsf{KS}/\mathsf{P1}/\mathsf{Ge}/\mu_{ u}$ Data

Data Volume :

Total 4712/1250 hours ON/OFF

HPGe Performance :

- 1.06 kg mass
- 0.4 keV RMS at 10 keV
- ▶ 5 keV detector threshold
- Background at O(1 cpd)[counts kg⁻¹ day⁻¹ keV⁻¹] background c/f Dark Matter expt.

<u>Analysis :</u>

- Cosmic veto (5 μs)
- Anti-Compton (Well + Base detectors)
- Pulse Shape Disc. (rise time, fall time, amp. to charge ratio)
- Efficiencied Normalization : (to <0.2%)
- $\blacktriangleright DAQ book keeping \rightarrow hardware status, deadtime$
- $\blacktriangleright \quad \mathsf{Random} \ \mathsf{Trigger} \to \mathsf{Eff.} \ \mathsf{of} \ \mathsf{Veto}$
- Stability of ⁴⁰K peaks
- Monitor 10 keV Ga X-rays peak

OUTLINE

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . **Sensitivity** Period II & III ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum** Calibration data **Summary**

Ħ

ł

```
#
```

Cosmic Veto, Anti-Compton & PSD

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... KS/P1/Ge/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data Summary**

OUTLINE

Efficiency & Uncertainties

Suppression	Efficiency
1.0	1.0
0.06	0.99
0.96	0.95
0.86	1.0
0.05	0.94
	Suppression 1.0 0.06 0.96 0.86 0.05

Sources	Uncertainties	$\sigma(\kappa_e^2) 10^{-20} \mu_B^2$
DAQ live time ON/OFF	<0.2%	<0.30
Efficiencies for magnetic scattering	<0.2%	<0.01
Rates for magnetic scattering	24%	0.23
SM background subtraction	23%	0.03
Combined systematic error		<0.4

OUTLINE

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum ... **Quenching factor** Integral Spectrum Calibration data Summary

 $KS/P1/Ge/\mu_{\nu}$: Result

Fit OFF spectra to p5 $\rightarrow [\phi_{OFF}; \delta\phi_{OFF}]$ (@ $\chi^2/dof = 80/96$)

H

Ħ

Fit ON spectra to $\phi_{OFF} + \phi_{SM} + \kappa^2 \phi_{MM} [10^{-10} \mu_B]$

Fit Results : $(@ \chi^2/dof = 48/49)$ $\kappa^2 = -0.4 \pm 1.3 (\text{stat.}) \pm 0.4 (\text{sys.})$

 \implies Limit : $\mu_{\nu} < 1.3(1.0) \times 10^{-10} \mu_B$ @ 90(68)% C. L.

H. B. Li et. al., TEXONO Coll., Phys. Rev. Lett. **90**, 131802(2003)

OUTLINE

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_{e}}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data Summary**

Sensitivity

 $\bar{\nu_e}$ magnetic moment :

At high $\sigma(\mu)/\sigma(SM)$ ratio :

 \rightarrow decouple from SM "background"

 $\bar{
u_e}$ decay constant :

A better Γ_{ν} limit than direct search.

OUTLINE

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data Summary**

Period II & III Summary

Period II : HPGe

• μ_{ν} analysis : + 1400/790 hours ON/OFF improved background & analysis

period II : Csl(Tl) [186 kg]

► attempt measurement of Standard Model $\sigma(\bar{\nu_e}e^-)$ $\rightarrow sin^2\theta_W$ at MeV range

Period III : ULE-HPGe [5 g]

• threshold \sim 60eV

t

- explore potentials on $\bar{\nu_e}N$ coherent scattering
- study quenching factor & pulse shape, neutron beam exp.

 \rightarrow trying to get onsite calibration...

OUTLINE $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . **Sensitivity** Period II & III ... $\bar{\nu_{e}}$ spectrum . . . **Quenching factor Integral Spectrum**

Calibration data

Summary

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\overline{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data** Summary

OUTLINE

Quenching factor

Quenching factor = 0.25, $\frac{\Delta E}{E} \sim 0.05$

Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_{e}}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data Summary**

OUTLINE

 $\bar{\nu_e}$ Magnetic ...

At quenching factor = 0.25 : ~ 0.05 count day⁻¹keV⁻¹ at ~ 140 eV. P1 data with HPGe : 0.05 count day⁻¹keV⁻¹ below 10 keV for 5g.

Integral Spectrum

For quenching factor = 1.0, 0.25, 0.5

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum ... **Quenching factor Integral Spectrum Calibration data Summary**

OUTLINE

If threshold \sim 100 eV \rightarrow 0.055 count day^{-1} Signal to noise ratio in this energy range \sim 2.2

Calibration data

Source : ${}^{55}\mathrm{Fe}(5.9 \text{ keV}, 6.49 \text{ keV})$ and $\mathrm{Ti}(4.51 \text{ keV}, 4.93 \text{ keV})$:

Extrapolate energy calibration to low energy

 \rightarrow threshold \sim 60 eV.

Noise and signal are well seperater

OUTLINE

 $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . Sensitivity Period II & III ... $\bar{\nu_e}$ spectrum . . . **Quenching factor Integral Spectrum Calibration data Summary**

Summary

- Period I : HPGe
 - μ_{ν} analysis : results published

Period II :

- analysing additional data on HPGe and CsI-array detectors
- # Period III : ULE-HPGe [5 g]
 - how to do calibration on-site?
 - study quenching factor & pulse shape, neutron beam exp.
 - upgrade to 1 kg multi-array ULE-HPGe.

Meanwhile :

other projects go on parallel

OUTLINE $\bar{\nu_e}$ Magnetic ... Limits of ... $\bar{\nu_e}e^- \rightarrow \bar{\nu_e}e^- \dots$ KS Expt. : ... KS Expt. : ... μ_{ν} with Reactor $\bar{\nu_e}$ KS/P1/Ge/ μ_{ν} Data Cosmic Veto, ... Efficiency & ... **KS/P1/Ge**/ μ_{ν} : . . . **Sensitivity** Period II & III ... $\bar{\nu_{e}}$ spectrum . . . **Quenching factor Integral Spectrum** Calibration data **Summary**