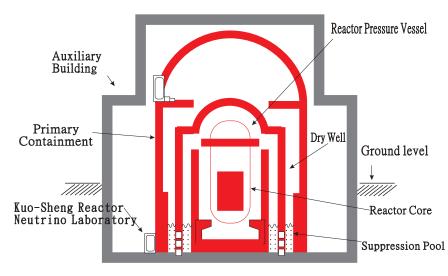
Research Program towards Observation of $\bar{\nu}_e N$ Coherent Scattering

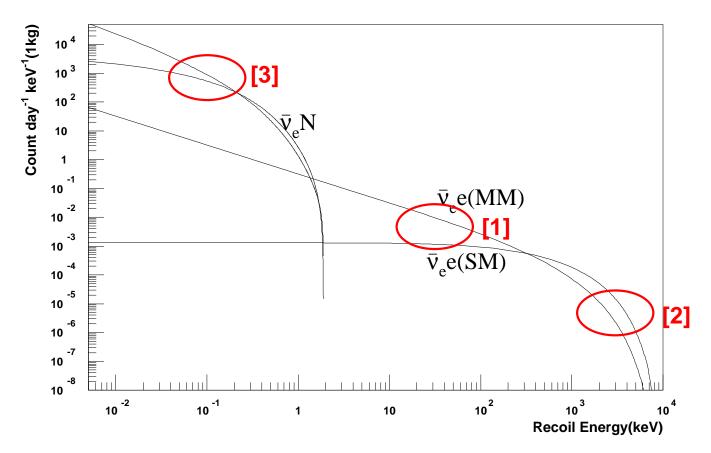
- TEXONO Collaboration & Magnetic Moment Search
- $\bar{\nu}_e N$ Coherent Scattering
- LEGe Detector Prototype
- Plans & Summary


H. B. Li 李浩斌 Moscow, Russia Academia Sinica, Taipei 中央研究院 2006 July 29

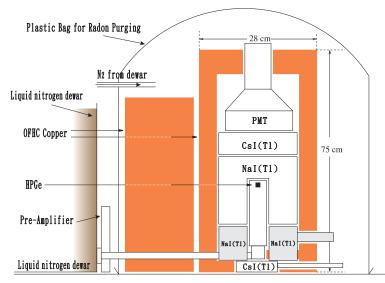
TEXONO Collabaration

- Collaboration: Taiwan(AS, INER, KSNPS, NTU), China(IHEP, CIAE, THU, NJU), Turkey(METU), USA(UMD), India(BHU)
- Program : Low Energy Neutrino & Astroparticle Physics

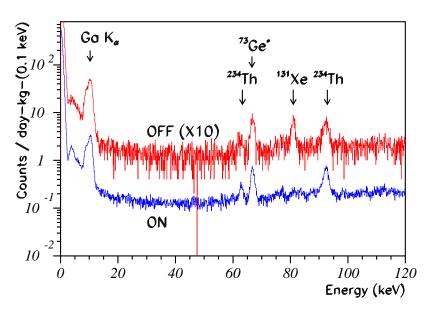
Kuo-Sheng Nuclear Power Station: Reactor Building

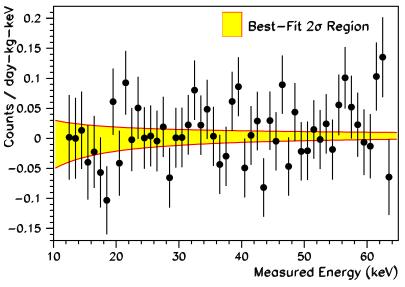

28 m from Reactor core

Kuo-Sheng Reactor Neutrino Laboratory


Physics Programs

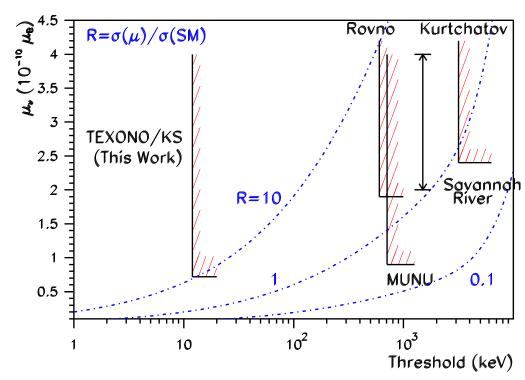
- [1] Magnetic Moment search at \sim 10 keV range \rightarrow Results published.
- [2] $sin^2\theta_W$ measument at \sim MeV range \rightarrow Analysis under way.
- [3] $\bar{\nu}_e N$ Coherent Scattering at sub keV range \rightarrow Future goal.




$\bar{\nu_e}$ Magnetic Moment Search

- 1 kg HPGe detector at reactor 571/128 days ON/OFF data.
- Background level ~ 1 cpd
- $\mu_{\nu} < 7.2 \times 10^{-11} \mu_{B}$ 90% C. L.
- **•** Low threshold (\sim 500 eV) detector

$$\Rightarrow \mu_{\nu} \rightarrow 2 \times 10^{-11} \mu_B$$

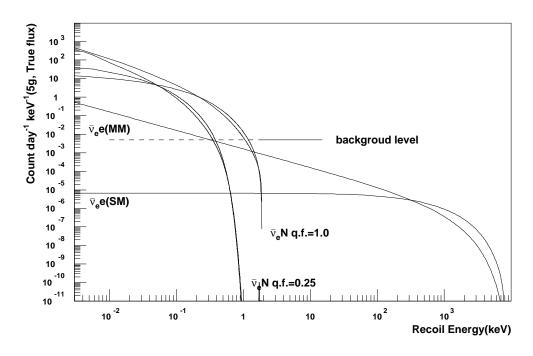


ref: [PRL <u>90</u> 2003], hep-ex/0605006

$\bar{\nu_e}$ at Low Energy

- $(\frac{d\sigma}{dt})_{MM} = \frac{\pi\alpha^2\mu_{\nu}^2}{m_e^2}(\frac{1}{T} \frac{1}{E_{\nu}})$
- **●** Low Energy $\rightarrow (d\sigma/dT)_{MM} >> (d\sigma/dT)_{SM}$ decouple bkg & unknown sources
- For $T << E_{\nu} \to d\sigma/dT$ depends on total flux $\phi\nu$ NOT shape of $\phi\nu(E_{\nu})$

$\bar{\nu_e}N$ Coherent Scattering


- \blacktriangleright $\nu + N \rightarrow \nu + N$

 - Low recoil energy : \sim 1.9 keV for $E_{
 u}$ = 8 MeV, Ge
- A fundamental neutrino interaction never been expermentally observed.
- A sensitive test to Standard Model.
- An important interaction/energy loss channel in astrophysics media.
- A promising new detection channel for neutrinos, without strict lower bound on E_{ν} & the channel for WIMP direct detection.
- Involves new energy range at low energy, many experimental challenges & much room to look for scientific surprises.

Quenching Factor

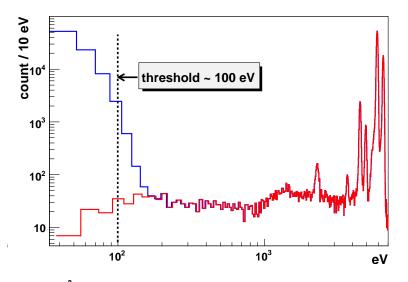
Quenching factor = 0.25, $\frac{\Delta E}{E} \sim$ 0.05

- Take Q. F. = 0.25, extrapolate background to eV level ⇒ signal/noise > 1 at 300 eV
- At threshold \sim 100 eV \Rightarrow 11 count day⁻¹ kg⁻¹
 - m
 u N at accelerator \sim 0.1 count day $^{-1}$ kg $^{-1}$
 - $\bar{\nu_e}P(\text{water})$ at KS \sim 1 count day $^{-1}$ kg $^{-1}$

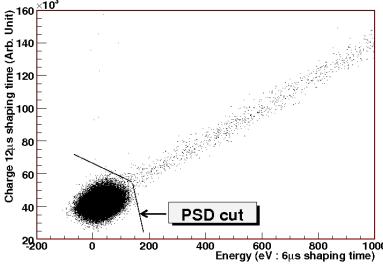
ULE-HPGe detector

- ULE-HPGe → developed for soft X-rays detection → easy & inexpensive & robust operation
- threshold $\sim 100 \text{ eV}$ achievable.
- $\bar{\nu}_e N$ coherent scattering, CDM search, μ_{ν} search.
- Prototype detectors:
 - 5 g, 4×5 g, 10 g, 20 g segmented.
- Scale-up \sim 1 kg (segmented or multi-array).

5 g Detector



4×5 g Detector

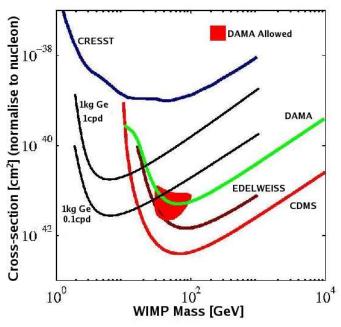

Calibration & Threshold

Source : 55 Fe(5.9 keV, 6.49 keV) and Ti(4.51 keV, 4.93 keV) :

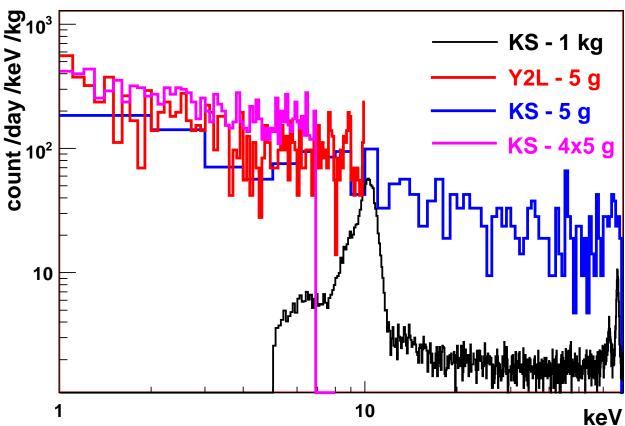
Using uncorrelated trigger as energy zero

Extrapolate energy calibration to low energy

⇒ threshold
 ~ 100-200 eV.
 Need calibration in low energy to comfirm this!

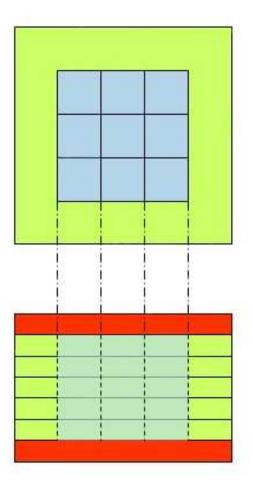


Yangyang Underground Lab.(Y2L), Korea


- 700 m of rock → Cosmic-rays level 5 order less.
- 5 g ULE-HPGe.
- Study background and feasibility for CDM searches.
- ullet may evolve into a full-scale (\sim 1 kg) CDM experiment.

Background Measurement at KS Lab. & Y2L

- KS Lab. & Y2L : same background level for 5 g detector.
- Background level different for 1 kg & 5 g detector → self-shielding → reproduced in simulations.
- Intensive studies of sub-keV background under way.


R&D Program towards Realistic Size

- O(1 kg) for $\bar{\nu_e}N$ & CDM experiments.
- sub-keV background study at power plant & underground lab.
 - design of active & passive shielding based on this.
- compare performance of various prototypes.
- devise calibration scheme at sub-keV range.
- measure quenching factor of Ge with neutron beam.
- develop advanced PSD techniques to further suppress noise edge
 - reduce threshold
- studying scale-up options ULEGe-detector
 - Discrete elements Vs segmented Ge
 - dual readout channels to suppress electronic noise

A Possible Design

2D Projection

- 3×3×5 elements, 20 g each (900 g).
- Dual readout per element.
- Outer layer as Veto.
- Gamma background suppress $\sim 1/100$.

- Inner Ge Detector
- Outer Ge Detector
- Covered Veto

Summary

- Kuo-Sheng Neutrino Lab. :
 - Established & Operational
 - Unique HPGe Low Energy Data
 - Background level ~1 cpd
 - → comparable to underground Dark Matter experiment.
- Results on μ_{ν} : Other Program under way.
- \blacksquare Future physics goal : get to \sim 100 eV threshold.
 - $\bar{\nu}_e N$ coherent scattering experiment.
 - Dark Matter experiment.
 - Improve μ_{ν} search at threshold \sim 500 eV.
- R & D Program :
 - Optimise prototype ULE-HPGe.
 - Background study at 100 eV 1 keV.
 - Study Scale-up options.

