Universal finite-size scaling functions with exact nonuniversal metric factors

Ming-Chya Wu, Chin-Kun Hu, and N. Sh. Izmailian

1 Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
2 Yerevan Physics Institute, Alikhanian Brothers St. 2, Yerevan 375036, Armenia

(Received 11 September 2002; published 26 June 2003; publisher error corrected 11 July 2003)

Using exact partition functions and finite-size corrections for the Ising model on finite square, plane triangular, and honeycomb lattices and extending a method [J. Phys. 19, L1215 (1986)] to subtract leading singular terms from the free energy, we obtain universal finite-size scaling functions for the specific heat, internal energy, and free energy of the Ising model on these lattices with exact nonuniversal metric factors.

DOI: 10.1103/PhysRevE.67.065103 PACS number(s): 05.50.+q, 75.10.–b, 64.60.Cn

Finite-size scaling has been of interest to scientists working on a variety of critical systems, including superfluids, spin models, percolation models, lattice gauge models, spin glass, etc. [1–4]. Universal finite-size scaling and finite-size corrections in finite critical systems have attracted much attention in recent decades [2–9]. Using renormalization group arguments, in 1984 Privman and Fisher first proposed the concepts of universal finite-size scaling functions (UFSSF’s) and nonuniversal metric factors [2]. Using Monte Carlo methods [10] and choosing aspect ratios of the square (SQ), plane triangular (PT), and honeycomb (HC) lattices so that these have the relative proportions 1:√3/2:√3 [11], Hu et al. and Okabe et al. found UFSSF’s for the percolation and the Ising models on two-dimensional lattices [3,4]. Since these studies were based on numerical simulations, there is always some numerical uncertainty in the obtained results. Here, we use the exact partition functions of the Ising model on finite SQ, PT, and HC lattices with periodic-aperiodic boundary conditions [12,13] and an exact expansion method [8] to obtain exact finite-size corrections of the free energy f^B, the internal energy E^B, and the specific heat C^B of the critical Ising model on these lattices with periodic-periodic (pp), periodic-antiperiodic (pa), antiperiodic-periodic (ap), and antiperiodic-antiperiodic (aa) boundary conditions (BC’s), where B denotes BC’s. Using these coefficients and extend a method [14] to subtract leading singular term from the free energy, we subtract leading singular terms from C^B, E^B, and f^B and find that the corresponding residuals Δ^B, Γ^B, and W^B [see Eqs. (7)–(9) below] have a very good finite-size scaling behavior. Choosing aspect ratios of the SQ, PT, and HC lattices so that these have the relative proportions 1:√3/2:√3 [11] and calculating exact nonuniversal metric factors from exact partition functions and finite-size corrections, we find that Δ^B, Γ^B, and W^B of the SQ, PT, and HC lattices have very nice universal finite-size scaling behavior.

The partition function of the Ising model is given by

$$Z = \sum_{\sigma} \exp \left[\beta J \sum_{\langle i,j \rangle} \sigma_i \sigma_j \right],$$

where J is the coupling constant, $\beta=1/(k_B T)$ with k_B being the Boltzmann constant and T being the absolute temperature, $\sigma_i=\pm 1$ is the Ising spin at site i, the first sum is over all spin states and the second sum is over the nearest-neighbor pairs $\langle i,j \rangle$ of the spins. The exact partition functions for $L_1 \times L_2$ SQ, PT and HC lattices for various periodic-aperiodic BC’s are [13]

$$Z^B = \frac{1}{2} \sqrt{2^{L_1/2} \cosh(\beta J)}^{2^{L_1/2} - 2 \sum_{i=1}^{4} e_i^B \Omega_i}.$$

where z is the coordination number of the lattice and e_i^B, shown in Table I are sign factors specified by BC’s, and $\Omega_1=\Omega_{(1/2)/(1/2)}$, $\Omega_2=\Omega_{(1/2)0}$, $\Omega_3=\Omega_{0(1/2)}$, $\Omega_4=-\text{sgn}(\theta/\theta_c-1)\Omega_{00}$, with

$$\Omega_{\mu \nu} = \frac{g L_1 - 1 - L_2}{4} \sum_{p=0}^{L_1} \sum_{q=0}^{L_2} \left[A_0 - A_1 \left(\cos \frac{2\pi(p+\mu)}{L_1} + \cos \frac{2\pi(q+\nu)}{L_2} \right) \right] \left(-A_2 \cos \frac{2\pi(p+\mu)}{L_1} - \frac{2\pi(q+\nu)}{L_2} \right) \right]^{1/2}.$$

Here g, A_0, A_1, A_2, and the critical values of βJ, $\beta_c J$, are listed in Table II.

To calculate the specific heat, we write Z^B as

$$Z^B = \frac{1}{2} \sqrt{2 \sinh(2\eta)}^{2^{L_1/2} - 2 \sum_{i=1}^{4} e_i^B Z_i(\tau,R,L)},$$

where $Z_i(\tau,R,L)$ is the partition function of the ith neighbor pair and η is a parameter to be tuned.

<table>
<thead>
<tr>
<th>BC</th>
<th>e_1^B</th>
<th>e_2^B</th>
<th>e_3^B</th>
<th>e_4^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pa</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ap</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>aa</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Here $\eta_2 = BJ$, $Z_2(\tau, R, L) = \Omega / (A/2)^{L_{2L}}$, $\tau = D_2 L e$, D_2 is a nonuniversal metric factor [15], $L = (L_{12})^{\frac{1}{2}}$, $e = (T - T_c)/T_c$, and $R = L_1/L_2$ is the aspect ratio. Then, the specific heat $C_2/k_B = (\eta_2/L^2)(\delta^2 \ln Z^2(\delta^2))$ near $\tau = 0$ can be written as

$$C_2 = \left[C_{0,0}(R) + C_0^B(R) + C_{1,0}^B(R) + C_0^B(R) + C_1^B(R) \right] - \delta \ln L + O(\delta^2)$$

with scaling function W^B. Here $f^B = f_{0,0} + f_{0,1}/L^2 + O(L^{-4})$ and $f^B = \beta E_{0,0} + \beta E_{0,1}/L + O(L^{-2})$, where $f_{0,0} = 0.9296954 \ldots$ for SQ, $0.8795854 \ldots$ for PT, and $E_{0,0} = 0.5772156649 \ldots$ is the Euler constant.

FIG. 1. The scaling functions $\Delta^B(\tau, R = 1, L)$, $\Gamma^B(\tau, R = 1, L)$, and $W^B(\tau, R = 1, L)$ as a function of τ with $D_2 = 1$ for (a) SQ, (b) PT, (c) HC lattices under periodic-periodic (pp) BC’s. Γ^B and W^B are shown as left and right insets, respectively.

$0.10250591 \ldots$ for HC lattices, $f^B = 0.9296954 \ldots$ for SQ, PT, and HC lattices are listed in Table III, and $E_{0,1} = -\sqrt{c_0 R f^B_2}$.

To study finite-size scaling, we define the scaling function for the specific heat, Δ^B, as

$$f^B = f_{0,0} + f_{0,1}/L^2 + O(L^{-4})$$

where $\eta_2 = BJ$, $Z_2(\tau, R, L) = \Omega / (A/2)^{L^{1-2}}$, $\tau = D_2 L e$, D_2 is a nonuniversal metric factor [15], $L = (L_{12})^{\frac{1}{2}}$, $e = (T - T_c)/T_c$, and $R = L_1/L_2$ is the aspect ratio. Then, the specific heat $C_2/k_B = (\eta_2/L^2)(\delta^2 \ln Z^2(\delta^2))$ near $\tau = 0$ can be written as

$$C_2 = \left[C_{0,0}(R) + C_0^B(R) + C_{1,0}^B(R) + C_0^B(R) + C_1^B(R) \right] - \delta \ln L + O(\delta^2)$$

with scaling function W^B. Here $f^B = f_{0,0} + f_{0,1}/L^2 + O(L^{-4})$ and $f^B = \beta E_{0,0} + \beta E_{0,1}/L + O(L^{-2})$, where $f_{0,0} = 0.9296954 \ldots$ for SQ, $0.8795854 \ldots$ for PT, and $E_{0,0} = 0.5772156649 \ldots$ is the Euler constant.

FIG. 1. The scaling functions $\Delta^B(\tau, R = 1, L)$, $\Gamma^B(\tau, R = 1, L)$, and $W^B(\tau, R = 1, L)$ as a function of τ with $D_2 = 1$ for (a) SQ, (b) PT, (c) HC lattices under periodic-periodic (pp) BC’s. Γ^B and W^B are shown as left and right insets, respectively.

$0.10250591 \ldots$ for HC lattices, $f^B = 0.9296954 \ldots$ for SQ, PT, and HC lattices are listed in Table III, and $E_{0,1} = -\sqrt{c_0 R f^B_2}$.

To study finite-size scaling, we define the scaling function for the specific heat, Δ^B, as

$$f^B = f_{0,0} + f_{0,1}/L^2 + O(L^{-4})$$

where $\eta_2 = BJ$, $Z_2(\tau, R, L) = \Omega / (A/2)^{L^{1-2}}$, $\tau = D_2 L e$, D_2 is a nonuniversal metric factor [15], $L = (L_{12})^{\frac{1}{2}}$, $e = (T - T_c)/T_c$, and $R = L_1/L_2$ is the aspect ratio. Then, the specific heat $C_2/k_B = (\eta_2/L^2)(\delta^2 \ln Z^2(\delta^2))$ near $\tau = 0$ can be written as

$$C_2 = \left[C_{0,0}(R) + C_0^B(R) + C_{1,0}^B(R) + C_0^B(R) + C_1^B(R) \right] - \delta \ln L + O(\delta^2)$$

with scaling function W^B. Here $f^B = f_{0,0} + f_{0,1}/L^2 + O(L^{-4})$ and $f^B = \beta E_{0,0} + \beta E_{0,1}/L + O(L^{-2})$, where $f_{0,0} = 0.9296954 \ldots$ for SQ, $0.8795854 \ldots$ for PT, and $E_{0,0} = 0.5772156649 \ldots$ is the Euler constant.

FIG. 1. The scaling functions $\Delta^B(\tau, R = 1, L)$, $\Gamma^B(\tau, R = 1, L)$, and $W^B(\tau, R = 1, L)$ as a function of τ with $D_2 = 1$ for (a) SQ, (b) PT, (c) HC lattices under periodic-periodic (pp) BC’s. Γ^B and W^B are shown as left and right insets, respectively.

$0.10250591 \ldots$ for HC lattices, $f^B = 0.9296954 \ldots$ for SQ, PT, and HC lattices are listed in Table III, and $E_{0,1} = -\sqrt{c_0 R f^B_2}$.

To study finite-size scaling, we define the scaling function for the specific heat, Δ^B, as

$$f^B = f_{0,0} + f_{0,1}/L^2 + O(L^{-4})$$

where $\eta_2 = BJ$, $Z_2(\tau, R, L) = \Omega / (A/2)^{L^{1-2}}$, $\tau = D_2 L e$, D_2 is a nonuniversal metric factor [15], $L = (L_{12})^{\frac{1}{2}}$, $e = (T - T_c)/T_c$, and $R = L_1/L_2$ is the aspect ratio. Then, the specific heat $C_2/k_B = (\eta_2/L^2)(\delta^2 \ln Z^2(\delta^2))$ near $\tau = 0$ can be written as

$$C_2 = \left[C_{0,0}(R) + C_0^B(R) + C_{1,0}^B(R) + C_0^B(R) + C_1^B(R) \right] - \delta \ln L + O(\delta^2)$$

with scaling function W^B. Here $f^B = f_{0,0} + f_{0,1}/L^2 + O(L^{-4})$ and $f^B = \beta E_{0,0} + \beta E_{0,1}/L + O(L^{-2})$, where $f_{0,0} = 0.9296954 \ldots$ for SQ, $0.8795854 \ldots$ for PT, and $E_{0,0} = 0.5772156649 \ldots$ is the Euler constant.
the internal energy,
\[G \]
for SQ, PT, and HC lattices, and \(D_j \) is defined in the text. According to the definition of internal energy
\[E_B \]
and
\[D \]
and
\[D \]

FIG. 2. The scaling function \(D_j \Delta^B(\tau, D_j R, L) \) as a function of \(\tau \)
for SQ, PT, and HC lattices, and \(D_j \) is defined in the text. (a) \(R = 1 \), \(pp \) BC’s, \(L_1 = 1024 \), \(D_j^{pp} = 0.957 \), and \(D_j^{HC} = 0.9896 \), (b) \(R = 1/2 \), \(pp \) BC’s, \(L_1 = 768 \), \(D_j^{pp} = 0.9898 \), and \(D_j^{HC} = 1.018 \), and (c) \(R = 1/2 \), \(\alpha \alpha \) BC’s. The behaviors of \(\Delta \), \(L \), and \(D \) are similar to those in Figs. 1, 2, and 3, respectively, which show
\[\Delta \]
and
\[L \]

According to the definition of internal energy
\[E_B = -(1/L^2) \left(\partial \ln Z_B(\partial \eta) \right) \]
we define the scaling function for the internal energy, \(\Gamma^B \), as

\[\Delta^B(\tau, R, L) = \frac{\partial^2 W^B(\tau, R, L)}{\partial \tau^2} = c^B \frac{E_B}{k_B} \left[C_0^B(R) + C_{0,0} \ln L \right] \]
\[= \left[D_2 A_{0,0}(R) + \frac{A_{0,0}(R)}{L} \ln L + O \left(\frac{1}{L^2} \right) \right] \tau + O(\tau^2) \]
\[+ \frac{C_{0,0}(R)}{L} + O \left(\frac{1}{L^2} \right). \]

Similarly, the scaling function for the free energy, \(W^B \), is
\[W^B(\tau, R, L) = -(D_2 L)^2 \left[\frac{\beta_c}{\beta} \left(f^B - \left(f_{0,0} + \frac{f_{0,1}}{L^2} \right) \right) \right] \]
\[+ \frac{\beta_c}{L} \left(E_{0,0} + E_{0,1} \right) \epsilon + \frac{1}{2} \left[C_0^B(R) + C_{0,0} \ln L \right] \epsilon^2 \]
\[= \frac{1}{2} \Delta^B \tau^2 + O(\tau^3). \]

In the scaling function \(\Delta^B \), \(C_0^B(R) \) is the leading term in
finite-size corrections. Thus, the finite-size effect for the \(pp \)
boundary condition is the smallest in comparison with the \(\alpha \alpha \), \(ap \), and \(aa \) BC’s. The behaviors of \(\Delta^B(\tau, R = 1, L) \), \(\Gamma^B(\tau, R = 1, L) \), and \(W^B(\tau, R = 1, L) \) as a function of \(\tau \) with
\(D_j = 1 \) for the SQ, PT, and HC lattices with \(pp \) BC’s are

\[\Delta \]
and
\[\Gamma \]
and
\[W \]
To study the UFSSF’s of $\Delta^B(t, R, L)$, we take aspect ratios of the SQ, PT, and HC lattices to have the relative proportions $1: \sqrt{3}/2: \sqrt{3}$. Equation (7) implies that for large lattices, the slope of Δ^B as a function of t at $t=0$ is determined by A^B_{D}. We can further multiply the scaling function by another nonuniversal metric factor D_1 to obtain

$$D_1\Delta^B(t, R, L) = D_2\left[A^B_{\text{L}}(R) + \frac{A_{0,0}(R)}{L} \ln L + O\left(\frac{1}{L}\right)\right] t + O(t^2) + O\left(\frac{1}{L}\right). \quad (10)$$

We can take values of D_1/D_2 so that the leading terms in the right-hand sides of Eq. (10) have the same slope for SQ, PT, and HC lattices. Accordingly, we take $(D_1/D_2)_{\text{SQ}} = 1$ for the SQ lattice, $(D_1/D_2)_{\text{PT}} = A^B_{\text{SQ}}(R_{\text{SQ}})/A^B_{\text{PT}}(R_{\text{PT}})$ for the PT lattice, and $(D_1/D_2)_{\text{HC}} = A^B_{\text{SQ}}(R_{\text{SQ}})/A^B_{\text{HC}}(R_{\text{HC}})$ for the HC lattice. To explore the behaviors of the amplitude A^B_{D} as a function of R, we consider $A^B_{\text{D}}(D_3 R)$ with scale factors $D_3 = 1, \sqrt{3}/2, \sqrt{3}$ for the SQ, PT, and HC lattices, respectively. The sign of the amplitude $A^B_{\text{D}}(D_3 R)$, in general, gives the information about the location (τ_{max}) of the maximum of the specific heat. When $A^B_{\text{D}}(D_3 R)$ is positive, $\tau_{\text{max}} > \tau_c$, and when $A^B_{\text{D}}(D_3 R)$ is negative, $\tau_{\text{max}} < \tau_c$. For the pp and pa BC’s, the behaviors of $A^B_{\text{D}}(D_3 R)$ for the SQ, PT, and HC lattices are roughly in a similar feature in the region of $0 < R \leq 1$. However, for the ap and aa BC’s, the curves of $A^B_{\text{D}}(D_3 R)$ for the SQ lattice are quite different from those for PT and HC lattices.

To show examples of (D_1/D_2) and UFSSF’s, we note that for $R = 1$, $(D_1/D_2)_{\text{PT}} = 0.9688 \ldots (pp)$, $(D_1/D_2)_{\text{HC}} = 1.0332 \ldots (pp)$, and $(D_1/D_2)_{\text{HC}} = 1.0981 \ldots (pa)$. For $R = 1/2$ and $1/3$, we have $(D_1/D_2)_{\text{PT}} = 0.9864 \ldots (pp)$, $0.9864 \ldots (pa)$, and $(D_1/D_2)_{\text{HC}} = 1.0520 \ldots (pp)$, $1.0520 \ldots (pa)$. We find that the values of D_1/D_2 are roughly $0.9864 \ldots$, $1.0520 \ldots$ for the PT and HC lattices in the range $0.05 \leq R \leq 0.75$ and the values are same for the pp and pa BC’s. Using these values and calculating D_1 based on exact specific heat for such finite lattices, we plot the $D_1\Delta^B(t, D_3 R, L)$ for the SQ, PT, and HC lattices in Figs. 2(a), 2(b), and 2(c), respectively, which show that the residual specific heats have very nice universal finite-size scaling behavior. Based on Δ^B, Γ^B, and W^B in Eqs. (7)—(9), we can further multiply the scaling functions of the internal energy and the free energy by the same D_1, and obtain UFSSF’s for $D_1\Gamma^B(t, D_3 R, L)$ and $D_1W^B(t, D_3 R, L)$, which are plotted in Figs. 3(a)—3(c). These figures also show very nice universal finite-size scaling behavior.

Although the results of this paper are based on analytic expressions for the physical quantities of the Ising model, our formulations can be extended to numerical or experimental studies of finite critical systems [16]. For example, the coefficients $C^B_0(R)$ and C^B_0 of Eq. (7) can be evaluated by using extrapolation techniques to analyze simulation or experimental data, then one can define the scaling function of the specific heat similar to that in Eq. (7). As a result, the UFSSF for the specific heat can be obtained.

We thank H. W. J. Blöte for a critical reading. This work was supported in part by the NSC of the ROC (Taiwan) under Grant No. NSC 91-2112-M-001-056.

[15] Definitions of D_1, D_2, and D_3 in the present paper are different from those of Ref. [3].