熱穩定單原子針的製備、特性與應用前景

文/郭鴻曦、黃英碩、傅祖怡、鄭天佐

單原子針是理想的點發射源,也是理想的掃描探針,是許多顯微技術的關鍵組件。 然而過去因其製作不易且不可靠,侷限單原子針的應用範圍。在這報告中,簡介近年 來有關熱平衡單原子針的製備新方法及其特殊的場發射特性,同時也介紹單原子針在 奈米科技的應用前景。

1. 發展單原子探針的重要性

顯微技術的進展是奈米科技是否能向上突破的 重要樞紐之一,因唯有透由高解析的顯微技術,吾等 方有可能觀察、分析、製作、操控與研究各式奈米材 料的物理或化學特性、評估製程的優劣,進而檢驗元 件的功能。綜觀目前常用幾種能達到奈米級解析度的 顯微技術中,如電子顯微鏡、離子顯微鏡或掃描探針 顯微儀等,其成像原理雖不盡相同,功能也各有千 秋,然若論及如何能增進上述這些顯微技術的解析度 與成像品質,其根本關鍵便都落在如何能製備一支極 尖與可靠的探針身上。

所謂聚焦是指在焦平面上以透鏡作用還原針尖的 virtual source size 的影像,因此當帶電粒子束 (charged particles)是由越小的針尖射出時,將可能在 焦平面上(即試片表面)匯聚成更小的光點(spot),而光 點的大小決定了電子/離子顯微鏡的解析度極限,也同時決定了亮度及對比(訊雜比)。1968 年,當 A. V. Crewe 提出以場發射電子槍(field emission gun, FEG)

郭鴻曦 中央研究院物理所助研究員。 Email:khs@phys.sinica.edu.tw 黃英碩 中央研究院物理所研究員。 傅祖怡 台灣師範大學教授。 鄭天佐 中央研究院院士,特聘講座。 取代傳統髮夾式熱電子槍(thermionic source)時,電子 顯微鏡的解析度、亮度與對比各因此提升了幾個數量 級以上,四十年來場發射式電子顯微鏡仍是目前能 達到最高解析度且最大亮度的電子顯微鏡。1975年, Krohn 首度提出以液態金屬為高亮度離子源 (liquid metal ion source, LMIS),三十年來鎵已經成為目前掃 描式離子顯微鏡(scanning ion microscope, SIM)或聚 焦離子束(focused ion beam, FIB)的標準離子束源。至 於在掃描探針顯微術上,1982年當 Binning 與 Rohrer 首次向世人揭示掃描穿隧顯微儀(scanning tunneling microscope, STM)時,便指出 STM 的解析度是直接取 決於掃描探針的針尖大小¹。由此可知,如何能製備 出極尖且可靠的金屬探針,便成為提升這些顯微技術 中的重要環節,更是奈米技術得以向上發展的要件。

2.傳統製備單原子針的方法

2.1.熱平衡針型與奈米針的場發射特性

幾乎所有製備金屬針的方法都是以電化學蝕刻 一細的金屬線開始,得到曲率半徑約50-100 nm 的金 屬針。針尖的曲面包含了許多不同米勒指向(Miller Index)平面,此時針尖的整體表面自由能,除了單純 考慮表面積外,同時亦應將不同米勒指向平面的表面 能異向性(surface energy anisotropy)列入考量,即 其中γ_{hkl}是指針尖某一(hkl)的表面能,S_{hkl}是指某一面 的面積,Σ(summation)意味著將所有針尖上各不同 指向的的表面能相加。為了能保持最低的整體表面自 由能,降低裸露面積,由微觀上來看,針頂端並非尖 狀,相反的,針端往往是以接近半球狀的多角形構 成,而且隨著在真空中加熱的溫度或次數,針端也將 越來越圓鈍。

這種平衡的圓鈍針形,如圖一(a)所示,雖然容易 製備,也具有極佳的穩定性,是目前所用的場發射電 子或氣體離子的發射源。但是因為針端沒有特殊尖凸 的圓鈍表面,沒有額外的局部場增益效應(local field enhancement),無法有效再侷限發射的區域與角度, 使得 virtual source size 只能維持在 100 nm 大左右;此 外,球形發散的電力線(electric line of force)分佈,造 成大張角發散的粒子束(半張角~35-50°),無法有效 提高粒子源亮度。為了改善此一問題,如果能在原有 針端上再形成一幾十奈米大的微小突起,如圖一(b) 所示,利用尖凸的局部場增益效應,一方面降低 virtual source size,另一方面針端附近趨近平行的電力線所 形成的透鏡效應(lens effect),可產生自我聚斂 (self-collimated)的粒子束,使半張角維持在幾度左 右。此種特殊針形,以帶電粒子光學(charged particle optics)而言極爲優異,因爲 virtual source size 及粒子 束張角定義了聚焦後的斑點大小與亮度2,也就主宰 了顯微術中解析度與影像品質的理論極限。

圖一:(a)一般場發射針的平衡針形與場發射張角,(b)奈 米針的特殊針形與場發射張角。

2.2. 傳統製備奈米針的方法與研究成果

問題是如何在原有只百奈米大的針尖頂上再形 成一數十奈米大的微小突起?特別是就熱力學而 言,針只會隨真空中加熱(degas 或 flash)的溫度或次 數而變鈍。十幾年來,國外許多重要實驗室紛紛提出 各種製備單原子針或奈米針方法。他們的方法大致可 分為三類,第一是利用離子轟擊 (ion bombardment) 法³,將針削尖⁴;第二是以熱場集結 (thermal-field buildup)原理⁵,在既有針尖上再抽拉出一小尖凸⁶;第 三則是利用場效蝕刻 (field-assisted etching)方法7,在 針尖上腐蝕出一尖凸⁸。這些方法雖然也有機會得到 非常尖細的針,這些尖針也曾被證實是理想的電子源 或掃描探針,然而這些方法,針尖都是以人為的方式 製作,不是穩定的針形,這種非熱力學平衡針型 (non-equilibrium tip shape)的出現,就如同曇花一現 般,只不過是整個製備過程中瞬時的一個暫態現象而 已。為了捕捉這決定性的一刻,除了需要特殊設備隨 時觀察針型變化外,操作者還需具備高超的技巧,因 一旦錯過最佳停止點,針反而變得更鈍,如圖二(a) 及(b)所示。因針尖微凸結構不具有化學及熱穩定性, 容易受損,且無法重生,更無法移出真空腔體外,故 能在實驗室中偶一得之,實不具有應用價值。近年 來,也有不少研究在鎢針上沾黏一奈米碳管,並證實 其爲一高亮度且高同調性電子源%。然而若只想在針尖 前附上單一碳管並非易事,往往是附上奈米管束 (bundles)¹⁰,此外碳管有許多不同形式,包括多壁、 單壁、chiral、armchair、有蓋、無蓋的,各有不同結 構的尖端,不同的傳導特性,而且碳管常為多點場發 射¹¹,因此並不是一完美的點電子源。

圖二:非熱平衡奈米針(a)形成過程,(b)毀壞過程示意圖。 最佳的針形的出現只是整個過程的一個暫態。

26

物理雙月刊(廿九卷一期) 2007 年二月

物理專文

3. 表面皺化與新單原子針的製備

是不是有可能製作出熱力學上穩定的單原子 針?1991 年宋克嘉及 Madey 發現,當在鎢(111)表面 覆上一物理單層的鈀,只要經過 700℃熱退火,原本 平坦的表面將形成大小不一,由三個{211}面所構成 的奈米金字塔微結構¹²,因鈀的吸附增加了不同指向 平面間的表面能差異,即使整體面積因皺化增加,但 整體表面自由能卻能因此而下降。有次聽到 Madey 演講,鄭天佐想到或許可利用此原理製造熱平衡單原 子針,經過一年多的嘗試,傅祖怡等人於 2001 年首 次成功的將這種吸附物誘發表面皺化現象(adsorbate induced faceting)應用在製備熱穩定的單原子針上。他 們發現只要在 W<111>針尖上真空蒸鍍適量的鈀,就 能在原有接近球狀針端[即 W(111), 如圖三(a)], 自發 性形成單一的三面奈米金字塔[如圖三(b)]。此金字塔 頂端由單一顆原子所終結,不但滿足了上述特殊針形 的幾何形狀[如圖一(b)],而且因爲此是平衡的針型結 構,是整個表面形貌的最終熱平衡狀態,因此製備過 程相對簡易可靠,不需即時觀察,針尖一旦受損,還 可以在腔體中施以退火,便得以反覆生成數十次13。

為了化解真空潔淨與蒸鍍在儀器實際應用的困 難性,2004年我們再提出更簡單且可靠的新製法,製 備這種熱平衡針形的單原子針。整個過程如圖四所 示,在新法中我們僅利用水溶液潔淨與電鍍技巧,便 可輕易完成製備單原子針的主要步驟,在真空中僅需 再經過退火,單原子針就自動形成¹⁴。以場離子顯微

圖三:(a)一般 W<111>針的平衡針形模擬上視圖,(b)表面 皺化後的平衡針形上視圖,此時針尖由原來的接近半球 狀,轉為三面{211}金字塔,三條稜線由頂端延伸至{110} 面。

圖四:以電化學技術製備單原子針流程示意圖:(a)將鎬 <111>單晶線蝕刻成針型;(b)以指甲油在針尖周圍塗覆絕 緣層;(c)以化學法還原表面氧化層(d)在針尖上電鍍貴金 屬;(e)以丙酮去除絕緣層;(f)在真空中加熱,使多餘的 貴金屬原子能擴散至金屬針的其他區域;(g)待貴金屬原子 擴散至約一物理單層厚時,因異質金屬誘發表面縐化現 象,使金屬原子自發性地堆疊出一三面金字塔結構,而其 頂端僅僅為一貴金屬原子所收斂,成為單原子針。

術(field ion microscopy, FIM)觀察針尖原子堆疊結構 ¹⁵,如圖五(a)所示,顯示針尖尖端為單一原子所終結, 場蒸發(field evaporation)第一層後,可以看到第二層 由三顆原子所構成[圖五(b)],第三層則為 10 顆原子 [圖五(c)]、第四層應為 21 顆,但幾顆邊角原子在場蒸 發第三層時也常一併被移除[圖五(d)],圖五(e)則是被 場蒸發破壞後的針尖,我們可以藉由一層層的場蒸發 觀察研究金字塔原子的堆疊形式,並繪出原子堆疊模 型,如圖五(f)所示,針尖頂端為單一原子所終結幾近 完美的{211}三面金字塔。相同的,被破壞的金字塔, 可以利用真空中 700℃退火幾分鐘,便得以回復原有

物理專文

D

ISAU

S

TO

的單原子尖銳度[圖五(g)-(i)]。此中值得一提的是,再 生的金字塔,無論原子的堆疊、金字塔的位置與方 位,皆與第一代相同,這意味著,此種單原子即使重 生以後,仍能保有原來場發射軸向與場發射特性,因 此並不需要在單原子針再生後重新校準光路。此外, 整個單原子針的製備流程只牽涉到水溶液中的電化 學技術與真空中的退火,其中電化學過程簡單、便 宜、可量產,至於對針尖加熱已是目前電子顯微鏡或 聚焦離子束的標準啓動過程,換言之,這研究結果徹 底解決了單原子廣泛應用的關鍵瓶頸。

4. 場發射特性分析

4.1. 電子場發射特性

單原子針是理想的電子點發射源¹⁶,經過 FIM 確 定為單原子針之後[圖六(a)],切換至場電子顯微儀 (field electron microscopy, FEM)模式,局部場增益效 應及透鏡效應,使得頂端原子得以在最低電壓下場發 射出自我聚斂的電子束(半張角~3°)[圖六(b)]。再切換

圖五:電鍍鈀之鷂針,經過700℃加熱後,單原子針的FIM影像:(a)證實此針尖端僅僅為單 一原子所構成;(b)將第一層單顆原子場蒸發後,可以看到第二層由三顆原子所組成;(c)場 蒸發第二層後,可以得知金字塔第三層為十顆原子所排列而成;(d)~(e)持續場蒸發可以一層 層的研究金字塔的原子結構;(f)此奈米金字塔的原子模型。經過場蒸發後其針尖結構已遭破 壞,但再經過700℃的加熱後,不但單原子針尖又生成一次,其金字塔結構也與之前一模一樣, 如圖(g)~(i)所示,其中(i)右下角一顆原子在場蒸發第二層時,亦一併被移除。

至 FIM 模式確認單 原子仍在針尖,之 後場蒸發上層單原 子,第二層三顆原 子顯露[圖六(c)],並 展現接沂三角形的 場發射圖樣[圖六 (d)]。相同地,我們 可以藉由反覆的場 蒸發與退火再生, 涿層觀察不同層的 場發射特性與量測 不同電壓下的場發 射電流。如圖七所 示,無論是電鍍鉑 或電鍍鈀之單原子 針或參原子針,場 發射電流皆隨電壓 增加而指數上升, 電子束亮度亦隨電 壓而增加,我們估 計 其 reduced brightness¹⁷可高達 $3.5 \times 10^8 \text{ A/m}^2 \cdot \text{sr}$ V,也就是說,當電 子束加速到 100 keV 時,電子束亮 度將高達 3.5×10¹³

28

物理雙月刊(廿九卷一期) 2007 年二月

A/m² · sr ,是目前場發射電子槍亮度的數十倍,更重要的是,單原子場發射確保了電子束高度的空間同調性(phase coherence)¹⁸。

圖六:電鍍鈀單原子針之場離子顯微影像與其相對應的電 子場發射影像圖:(a)第一層單顆原子之場離子影像;(b) 單原子針之電子場發射影像,白色長條大小相當於2°,因 此張角約6°,遠小於傳統鎢針的場發場源之張角;(c)第二 層三顆原子之場離子影像;(d)參原子針之電子場發射影 像。

4.2. 氣體離子場發射

單原子針也是理想的點離子束源,圖八(a)是第一 代及第二十代鉑/鎢(111)單原子針在不同擷取電壓下 的氛離子場發射電流曲線。雖然爲金字塔型針尖,其 場離子源電流-電壓特性曲線如一般金屬針¹⁹,大致可 分爲兩個區域,低電場時,電流由離子化機率所決 定,因此電流隨電壓上升而急遽上升(斜率~60);在高 電場時,離子化速率已十分快速,電流大小轉而由氣 體分子的供應速率所決定,電流隨電壓的上升而緩慢 上升(斜率~6)。在1×10⁻⁴Torr氣壓下,第一代單原子 針可射出約10 pA 的 Ne⁺離子,如果爲參原子針,除 了因針形稍鈍需要較高的起始電壓外,其餘 i-V 特性

圖七:單原子針與參原子針場發射電流與電壓關係圖。由 圖中可知,無論是電鍍鈀或電鍍鉑針,一旦形成單原子針, 在同樣電壓下,其場發射電流將比三顆原子針激增約70倍。

與單原子針相似,兩者有相同的飽和電流值,意味著 參原子針的最大亮度僅有單原子針的 1/3。我們反覆 重生單原子 19 次,第二十代的單原子針仍可再現相 同的 i-V 特性,除了因反覆加熱讓單原子針的基底稍 鈍,需要較高的起始電壓外,與第一代相比,相同的 飽和電流代表著相同的離子亮度。如果我們將氣壓加 大兩倍(Ne~2×10⁻⁴ Torr),亮度也將增大兩倍至約 1× 10¹¹ A m⁻² Sr⁻¹,是目前常用鎵液態金屬離子源(LMIS) 的 100 倍。我們預期,如果將氣壓加大至目前氣體場 離子源常用的 1×10⁻² Torr,此單原子針的亮度將是 LMIS 的一萬倍。圖八(b)-(d)則是第二十代單原子針在 不同電壓下的離子發射影像,如所預期,只有單一聚 斂的離子束由針尖射出,半張角僅有 0.8°。

5. 未來的可能應用與挑戰

5.1. 聚焦離子束

聚焦離子束目前已廣泛應用於表面成像、微加工 (micro-machining)、結構或電路修補、局部析鍍、材 料分析與離子佈植(ion implantation)等半導體工業上。

29

圖八:(a) Pt/W(111)單原子針在 40K 時之魚離子電流與電
壓特性曲線,(b) 第二十代單原子針 6800V 的場離子影像,
(c) 7200V 之場離子影像,(d) 7600V. 場離子影像。scale
bar =2°。

現今聚焦離子束系統皆以液態金屬為離子源,但液態 金屬離子無可避免地佈植於材料內部,改變材料的物 性或化性。液態金屬離子束的能量分佈寬(5-50 eV)、 張角大(~60°),有嚴重色像差(chromatic aberrations)與 球狀像差(spherical aberrations)問題,離子束僅能聚焦 到 20 奈米左右,亮度也只有約 6×10⁸ Acm⁻²sr^{-1。}此外, 液態金屬離子的來源是由場蒸發針尖液態金屬而 來,而針尖是靜電力與液態金屬表面張力間動態平衡 的結果,所射出的離子並非來自一穩定可靠的尖點, 針尖晃動也使離子束無法穩定地聚焦於同一點上。

如能在針尖上長出約一、兩奈米大的微凸結構, 就像本研究所揭示的奈米金字塔,因局部電場增益效 應(field enhancement effect)與針尖周圍靜電場分 佈, 使得只有針尖尖端能射出一自我聚斂 (self-collimated)離子束。由於粒子束源自尖端單顆原 子,且張角小,所以僅需 10⁻¹⁴-10⁻⁹ A 的電流,便可以 輕易達到 10¹⁰ - 10¹² Acm⁻²sr⁻¹的亮度。小電流有效地 降低帶電離子間庫侖作用效應,使離子束能量分佈小 於 1 eV,改善色像差問題,讓解析度得以突破目前的 極限。此外,爲了維持特有奈米針尖結構,我們預計 不再以場蒸發針尖原子,而是改以離子化吸附其上之 氣態分子爲離子束。利用氣體場離子作爲離子源的好 處是離子束不會污染樣品,而且可因應用目的不同改 變氣體,顯微鏡術可用質量小的氫或氦氣,離子刻畫 可用質量大的氫離子束,如果要用在半導體的局部 (點、線、面) 摻雜(dopping)或氧化的目的,砷、磷 或氧的氣體也都可以使用,比起現有鎵液體離子源多 元。此外,由於針尖微凸結構本身並非離子的供應 者,在操作中得以維持穩定的針形與穩定的離子束。

5.2. 電子全像術

電子波的空間同調性(spatial coherence)取決於發 射電子源面積的大小。理論上,當所有電子都源自於 同一原子點時,將達到最大空間同調性。傳統電子顯 微術對化學或生物分子的成像是一項重大挑戰,往往 解析度與輻射傷害(radiation damage)兩者之間難以取 捨。當電子束能量或照射量(dose)降低,影像品質也 往往變差;如果增高照射量,又易導致樣品的損害。

圖九:低能量電子全像術示意圖。利用簡單投影原理放大 試片影像,不需使用透鏡,如果使用同調(phase coherent) 電子束,受散射的電子波與未受散射的參考波將在右方的 螢光屏上形成干涉圖(即全像圖)。

物理雙月刊(廿九卷一期) 2007 年二月

30

物理專文

低能量電子點投影顯微儀(low-energy electron point projection microscope, LEPPM),極適合用於化學或生物分子等脆弱分子之相關研究。如圖九所示,其原理是直接把電子源帶近試片至微米以內,降低電子束能量至 200 eV 以下,以點投影放大,將試片影像直接投射至遠端螢光屏上。如果能輔以單原子針產生的同調電子束為光源,充分利用電子的波動性,於成像放大同時記錄散射波與參考波間之相位差干涉圖(全像圖,hologram),將有機會做 3D 立體影像重建(image reconstruction),以最少的輻射劑量取得最多的樣品幾何訊息。除此之外,由於中間不需要任何電磁透鏡的設置,不但架構簡單,也避免透鏡之球狀像差等問題。

圖十是自行架設的低能量電子全像初步的研究 結果²⁰,我們將單壁奈米碳管溶液滴在多孔碳網上, 藉由 STM 常用的步進器,逐步將針帶近試片,如圖 十(a)-(d)所示,隨著單原子針的逼近,影像也逐步放 大。最後在螢光屏上可以看到許多直徑一致的單壁奈 米管狀物橫跨在碳網中,如圖十(e)所示。此時電子束 的能量僅有 210eV,因此即使經過長時間的照射,也

並未造成碳管樣品的 損壞,如果想在傳統的 電子顯微鏡上,以如此 低的電子能量操作,是 很難取得如此高分辨 的影像。再進一步逼 近,如圖十(f)所示,可 以得到單壁奈米碳管 的全像圖,換言之,如 果經過妥善的影像重 建,將有可能得到三維 的碳管影像。

5.3. 未來研究的挑戰

在這一系列的研 究中,我們發展了熱力 學平衡態單原子針的 新製法,製法中僅以簡單可靠的電化學技術,及顯微 設備相容的退火過程,便可得到可重複再生、結構穩 定的單原子針。此針除了是理想中最小的發射點外, 還可發射出比目前一般場發射電子槍或液態金屬離 子槍更大的亮度、更小的張角與更穩定的發射電流。 換言之,這單原子針,將有可能取代目前常用的粒子 束源或掃描探針,而成為未來先進高解析度顯微設備 的主力。然如果要達到此一目標,還有其他技術上的 挑戰需要克服,如需要高品質的光學系統,特別是為 單原子針發射特性所設計的真空透鏡組(column)。由 於發射張角甚小,因此必須要有機制將針尖準確的安 置在光路的軸心上(如位移差小於 1 μm, 角度差小於 0.1 度),否則電子束(離子束)將無法通過光圈。震動 問題也是影響解析度的另一考量,針尖與試片間的相 對位移應小於 10 nm。此外在聚焦離子束方面,需要 設計差動抽氣(differential pumping)技術,及考慮探針 降温問題(T<20K),以提高離子電流。此外也需要使 用高純度氣體,減少離子電流雜訊及延長離子源壽命 等等。這些重要關鍵議題,有待不同專長的人才共同 合作方有可能達成。

圖十:低能量電子點投影顯微影像,(a)~(d)以步進器逐步將針帶近至試片,影像放大率 隨針尖與試片距離縮短而增加,(e)單壁奈米碳管網絡低能量電子顯微影像,(f)單壁奈 米碳管的電子全像圖。

31

物理雙月刊(廿九卷一期) 2007 年二月

參考資料

Physics Bimonthly

¹ G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett., 49, 57 (1982).

²亮度 B=i/[(dS)·(dΩ)], 其中 i 為電流, dS 為 virtual source size, dΩ為 solid angle, 因此縮小 virtual source size 與電子束 solid angle 將可提升亮度。

⁴ A. P. Janssen, J. P. Jones, J. Phys. D, 4, 118 (1971);

⁴ H. W. Fink: IBM. J. Res. Dev. 30, 460 (1986).

⁵ P.C. Bettler and F. M. Charbonnier, Phys. Rev. 119, 85 (1960)

⁶ V. T. Binh and N. Garcia, Ultramicroscopy, 42-44, 80(1992).

⁷ J. F. Mulson, E. W. Muller, J. Chem. Phys., 38, 2615 (1963).

⁸ M. Rezeq, J. Pitters, R. Wolkow, J. Chem. Phys., 124, 204716 (2006).

⁹ N. de Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, Nature 2002, 420, 393.

¹⁰ K.A. Dean, B. R. Chalamala, J. Appl. Phys. 1999, 85, 3832.

¹¹ N. de Jonge, M. Allioux, M. Doytcheva, M. Kaiser, K.
B. K. Teo, R. G. Lacerda, W. I. Milne, Appl. Phys. Lett. 2004, 85, 1607.

¹² K. J. Song, C. Z. Dong, T. E. Madey, Langmuir, 7, 3019 (1991)

¹³ T. Y. Fu, L. C. Cheng, C. H. Nien and T. T. Tsong, Phys. Rev. B, 64, 113401 (2001).

¹⁴ H. S. Kuo, I. S. Hwang, T. Y. Fu, J. Y. Wu, C. C. Chang, T. T. Tsong, Nano Letters, 4, 2379 (2004).

¹⁵ 以 FIM 是研究針尖原子結構是有佳的方法。有關 FIM 的基本原理、儀器架構、成像技術與影像解讀,

可參考 T. T. Tsong, "Atom-Probe Field Ion Microscopy", Cambridge, 1990.

¹⁶ N. Garcia, H. Rohrer, J. Phys.: Condens. Matter, 1, 3737 (1989).

¹⁷ Reduced brightness b=B/V,其中B為亮度,V為加速電壓。因電子束軸向動量及張角因加速電壓而變,

故 reduced brightness 是評估電子源亮度較客觀的方式。

¹⁸ W. Qian, M. R. Scheinfein, J. C. H. Spence, Appl. Phys. Lett., 62, 315 (1993).

 ¹⁹ T. T. Tsong: Atom-Probe Field Ion Microscopy (Cambridge Univ. Press, Cambridge, 1990) p.19.
 ²⁰ I. S. Hwang et al., in preparation.