The vortex state of FeSe$_{1-x}$Te$_x$ superconducting thin films

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/0953-2048/24/10/105011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 140.109.103.227
The article was downloaded on 09/05/2012 at 07:57

Please note that terms and conditions apply.
The vortex state of FeSe$_{1-x}$Te$_x$ superconducting thin films

H H Chang1,2, J Y Luo3, C T Wu1, F C Hsu2, T W Huang3,4, P M Wu3, M K Wu3 and M J Wang2,3

1 Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan
2 Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan
3 Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
4 Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf 8600, Switzerland
5 Solid State Physics, Lund University, Box 118, S-221 00 Lund, Sweden

E-mail: mingjye@asiaa.sinica.edu.tw (M J Wang)

Received 6 June 2011, in final form 29 July 2011
Published 1 September 2011
Online at stacks.iop.org/SUST/24/105011

Abstract

We report the vortex dynamics of tellurium substituted FeSe$_{1-x}$Te$_x$ superconducting thin films. The electric field versus current density (E–J) curve for films with low Te substitution is still governed by the thermally activated flux flow model at temperatures as low as 0.5T_{offset}. In contrast, we clearly observed a vortex liquid–glass transition in films with high Te substitution. The E–J curves of these samples fit nicely to the scaling relations based on the 3D vortex glass theory. Our results reveal an enhancement of the vortex pinning as more Te content is introduced, which probably originates from the excess Fe at the interstitial site.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The discovery of iron-based superconductors [1–3] has attracted enormous worldwide attention, similar to what followed the discovery of high T_c cuprate superconductors more than twenty years ago. In addition to providing the opportunity for achieving a better understanding of the superconductivity mechanism, the high upper critical field and low anisotropy indicate promise for applications [1–4]. Increasing the critical current density J_c is an important task for applications. The J_c of iron-based superconducting thin film was enhanced by introducing a buffer layer and extrinsic pinning centers [5, 6]. Superconducting quantum interference devices composed from grain boundary junctions were also achieved [7]. However to get better improvement of J_c, a more detailed understanding of the pinning mechanism and vortex state properties are necessary. Kim et al reported evidence of a 3D vortex glass state in (Ba,K)Fe$_2$As$_2$ single crystal [8]. On the other hand, thermally activated flux flow was observed in NdFeAsO$_{0.75}$F$_{0.25}$ [9] and Fe$_{1.03}$Te$_{0.55}$Se$_{0.45}$ [10] crystals. Strong vortex pinning, with pinning centers due to spatial fluctuation of superconducting areas or including excess Fe, was reported in Fe$_{1.04}$Te$_{0.60}$Se$_{0.40}$ single-crystalline samples [11]. The existence of a vortex liquid–glass transition in FeSe$_{1-x}$Te$_x$ superconductors is still not proved, and a more systematic study may help to better characterize the vortex state. In this paper, we report the vortex states of a series of FeSe$_{1-x}$Te$_x$ superconducting thin films. The detailed E–J characteristics reveal the difference in vortex behavior between low Te substitution and high substitution samples. A clear vortex glass–liquid transition is observed in high Te substitution samples. However even well below T_{offset}, thermally activated behavior still dominates the motion of the vortex in low Te substitution samples and no signature of a vortex glass–liquid transition appears.

2. Experimental details

The c-axis preferred orientation FeSe$_{1-x}$Te$_x$ thin films were grown on an MgO substrate by the pulsed laser deposition (PLD) technique. The details of the sample preparation and characterization were described earlier [12]. The Te substitution level of these thin films was calibrated on the
Figure 1. ((a)-(e)) The resistive transition of FeSe$_{1-x}$Te$_x$ films, $x = 0$, 0.43, 0.48, 0.56, and 0.85, as a function of temperature. The applied magnetic fields are 0, 1, 3, 5, 7, 9 T along the c-axis of the film. (f) The magnetic field dependence of T_{offset} and ΔT_C. The superconducting transition becomes less broadened under magnetic fields in higher Te substitution samples, except for the $x = 0.85$ sample. The applied current density during measurement is around 2 kA cm$^{-2}$.

basis of the position of the x-ray diffraction peaks, and double-checked via the chemical composition determined using EDAX. The films were patterned into a Hall-bar geometry for transport measurements, which were performed using a Quantum Design physical property measurement system (QD-PPMS). The magnetic field was applied along the c-axis of the thin film.

3. Results and discussion

Figures 1(a)-(e) show the resistive transition for FeSe$_{1-x}$Te$_x$ films as a function of temperature under magnetic fields up to 9 T for $x = 0$, 0.43, 0.48, 0.56, and 0.85 respectively. The offset superconducting transition temperature, $T_{C_{\text{offset}}}$, defined as $\rho(T_{C_{\text{offset}}}) = 0.1\rho_n$, and the superconducting transition width, $\Delta T_C \equiv T(0.9\rho_n) - T(0.1\rho_n)$, are shown in figure 1(f). The superconducting transition temperature of FeSe$_{1-x}$Te$_x$ films is lower than that of polycrystalline samples, especially for low Te substitution films, because of the strain effect on thin films [13]. Under an external magnetic field, the superconducting transition shifts to low temperature and becomes broadened. In figure 1(f), the broadening of the superconducting transition is reduced in higher substitution samples ($x = 0.43, 0.48$, and 0.56), indicating a stronger flux pinning effect and a different vortex state at low temperature from low Te substitution films. A finite resistance at low temperature is observed in the $x = 0.85$ sample under high external magnetic fields (in figure 1(e)). The detailed in-plane x-ray diffraction results show that there may exist two different
grains with different orientations in this particular sample, as shown in figure 2. This finite resistivity at low temperature under strong magnetic field could be due to the suppression of the superconductivity of the grain boundaries.

Figure 3 displays a typical logarithmic plot of E–J curves at different temperatures for $x = 0.43$ and 0.48 samples under $B = 3$ T. For $x = 0.43$ sample, the temperature of these E–J curves ranges from 7.75 to 4.2 K, corresponding to the reduced temperature, defined as $T/T_{\text{offset}}(B = 0)$, ranging from 0.9 to 0.5. However even at $T/T_{\text{offset}}(B = 0) = 0.5$, the curvatures of the E–J curves remain positive, revealing that the motion of the vortices is still within the thermally activated flux flow (TAFF) regime. Similar results were found for the $x = 0.48$ sample, as shown in figure 3(b), with $T/T_{\text{offset}}(B = 0)$ ranging from 0.8 to 0.4.

According to the TAFF model [14, 15], for the low J regime the E–J relation can be given as approximated as

$$E \approx 2\nu_0 \frac{J B^2 V_c}{k_B T} L \exp(-U_0/k_B T),$$

(1)

where U_0 is the activation energy for the hopping of vortex bundles, L is the pinning range, V_c is the flux bundle volume and ν_0 is the attempt frequency. The Arrhenius plot, $\ln \rho$ versus $1/T$, is shown in the inset. Two slopes at low temperature are attributed to free flux flow and thermally activated flux flow regimes. The activation energy U_0 can be estimated from the slope of the Arrhenius plot for the TAFF regime. Figure 4 shows the magnetic field dependence of U_0 for $x = 0.43$ and 0.48 films. The U_0 is about a few hundred $k_B T$, which is smaller than those of Fe-based superconducting crystals [9, 10] and other superconductors [16, 17]. The U_0 follows a form $U_0 = \alpha(1 - B/B^*)^2$, where B^* is the irreversibility field B_{irr} or a Kramer scaling field B_K [17] (solid lines in figure 4). The fitted value of B^* is 28 T and 22 T for $x = 0.43$ and 0.48 samples respectively, which is larger than that of MgB$_2$, \sim10 T [16]. The higher B^* value indicates less suppression of the superconductivity by magnetic fields, which is consistent with the high H_{C2} in FeSe$_{1-x}$Te$_x$ superconductors. The irreversibility fields of FeSe$_{1-x}$Te$_x$ were investigated by means of temperature-dependent magnetization measurements [18]. A power-law temperature dependence, typically for cuprate superconductors, was observed and a high irreversibility field is expected at temperature well below T_C [18].

Figure 3. ((a), (b)) The E–J curves of FeSe$_{1-x}$Te$_x$ films under magnetic fields of 3 T, for $x = 0.43$ and 0.48 film. The temperature range is from 7.75 to 4.2 K and from 8 to 4 K, respectively. The $\ln \rho$–$1/T$ plot, shown in the inset, indicates free flux flow (FFF) and thermally activated flux flow (TAFF) regimes. No signature of a vortex glass transition was observed even at temperatures down to 0.5 T_{offset} for $x = 0.43$ and 0.48 films respectively.
samples respectively. The data for NdFeAsO$_x$B$_{1-x}$ lines). The fitted value of z and U dependence of D respectively, and x is 5.55 K, corresponding to a
the curvature of E. The activation energy of the vortex, E_g in figure 4.

For the $x = 0.85$ sample, the VG transition can also be observed under low magnetic field. Figure 5(b) presents the result under nominally zero magnetic field for the system. The scaled E–J curves and the resistivity vanishing as a power law at T_g are shown in the upper and lower insets of figure 5(b). However, the E–J curve at temperature down to 4 K still shows Ohmic behavior under high magnetic fields, which is consistent with the resistivity measurement results in figure 1(e).

Our results strongly suggest more effective pinning centers in samples with higher Te substitution level. According to the x-ray diffraction and SEM observations the crystallinities of these films, except for the $x = 0.85$ film, are similar. Therefore, we do not expect the grain boundaries to play important roles in the observed vortex pinning. It was pointed out from a neutron experiment [22] that there exists extra Fe located in interstitial sites. X-ray refinement results also demonstrated more excess Fe and greater suppression of the superconductivity in higher Te substitution samples [23–25]. Hence, the observation of a stronger pinning effect in the high Te substitution samples most likely originates from the excess Fe.

4. Conclusion

In conclusion, the vortex states of FeSe$_{1-x}$Te$_x$ superconducting thin films have been investigated. For higher Te substitution, $x = 0.56$ and 0.85 in this paper, a vortex glass transition was observed and the E–J curves can be well scaled on the basis of 3D vortex glass theory. The critical exponents ν and z are insensitive to the external magnetic field. The E–J characteristics of low Te substitution FeSe$_{1-x}$Te$_x$ films, $x < 0.48$ in this paper, still follow the thermally activated flux flow model even at $T/T_c^{\text{eff}}(B = 0 \ T) = 0.4–0.5$. The activation energy is found to be in the order of 100kT and the irreversibility field B_{irr} (or a Kramer scaling field B_K) is found to be a factor of 2 larger than those of the MgB$_2$ samples. Our results reveal enhancement of the flux pinning as Te is substituted, which is consistent with the tendency of excess Fe concentration. Our results suggest that FeSe$_{1-x}$Te$_x$ samples have great potential for practical applications.

Figure 5(a) shows the log–log plot of the E–J curves at different temperatures for the $x = 0.56$ film under a 7 T magnetic field. The data temperature ranges from 9.15 to 5.55 K, corresponding to a $T/T_c^{\text{eff}}(B = 0 \ T)$ range from 0.8 to 0.5. The E–J curve changes from having a positive curvature to having a negative curvature with decreasing temperature. This phenomenon can be well described by the vortex glass (VG) theory [19]. According to the VG theory, at the vortex glass transition temperature T_g, the E–J curve follows a power-law relation. Above and below T_g the curvature of E–J curve in the log–log plot changes from positive to negative. The T_g in figure 5(a) can be identified as 7.55 K, shown as a dashed line. In addition, the E–J curves can be scaled by using the formulas

$$ \frac{E}{J(T - T_g)^{(z+2-D)}} = f_{\pm}(\frac{J}{[T - T_g]^{\nu(D-1)}}), $$

where f_{+} and f_{-} represent the function above and below T_g, respectively, and D is the dimensionality. According to the three-dimensional VG theory [19], the scaling parameter ν and z was suggested to be 4–7 and 1–2 respectively. The experiments on YBCO films reported the values of $\nu = 1.7$ and $z = 4.8$ [19]. The quasi-2D vortex glass systems were demonstrated in Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ films and MgB$_2$ films by choosing $D = 2$ to get reasonable scaling parameters [20, 21]. The upper inset of figure 5(a) presents the scaled versions of the E–J curves at temperature near T_g. A good
Figure 5. (a) The $E-J$ curves of FeSe$_{1-x}$Te$_x$, $x=0.56$, thin film under a magnetic field of 7 T. The temperature ranges from 9.15 K to 5.55 K with a step of 0.2 K. The dashed line, a guide to the eye, indicates the vortex glass transition temperature $T_g = 7.55$ K, corresponding to the reduced temperature T/T_{c} offset $C = 0.7$. The upper inset displays the corresponding scaled $E-J$ curves with $\nu = 1.2$, $z = 4.0$, and the dimension $D = 3$. The ρ_{lin} vanishes as a power law as T approaches T_g, as shown in the lower inset. (b) The $E-J$ curves of FeSe$_{1-x}$Te$_x$, $x=0.85$, thin film at zero magnetic fields. The temperature ranges from 8.9 to 4.2 K. The dashed line indicates the vortex glass transition temperature $T_g = 7.35$ K, corresponding to T/T_{c} offset $C = 0.7$. The upper and lower insets show the corresponding scaled $E-J$ curves and the logarithmic plot of ρ_{lin} versus $(T - T_g)$, respectively.

Acknowledgments

This work was supported by the National Science Council, Taiwan, grant Nos 98-2119-M-001-025 and 99-2112-M-001-028-MY3.

References