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Processive Motor Protein as an Overdamped Brownian Stepper
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The two headed motor protein kinesin appears to ‘‘walk’’ along the biopolymer microtubule in 8 nm
steps. There is ample justification for a model where the motion of the detached head to the next docking
site on the biopolymer is described as ratcheted diffusion. The forward reorientation of an attached head
can be conceived of as a power stroke. A model that is based on these premises can accurately predict
parameters of motor protein motion.

DOI: 10.1103/PhysRevLett.91.148104 PACS numbers: 87.16.Nn, 05.40.–a, 82.39.Fk
1111 6666     nnnnmmmm

1111 ---- φ φ

(a)

(b)

GGGG

FIG. 1. The setup for our model. One step of the two headed
motor protein (a) corresponds to traversing one unit in a 1D
reaction space (b). The reorientation of the attached head is the
power stroke with energy G that covers a fraction �1�
� of
the cycle. The subsequent diffusion and docking of the de-
tached head does not dissipate any energy and covers the
biopolymer and, in the course of stepping, these bonds are remaining fraction 
.
When a human is walking, the physics involves mass,
gravity, and inertia. Most power is consumed by the
repeated acceleration as the foot that was in touch with
the ground is brought forward to a position in front of the
torso. Friction plays only a minor role in the energetics.

Biomechanics does not scale. Going into the micro-
scopic realm, the significance of inertia and mass (which
are proportional to volume, i.e., L3) becomes smaller
relative to the significance of friction (which is pro-
portional to surface area, i.e., L2). For a bacteria, swim-
ming in water feels like swimming in molasses would
feel to us [1].

With submicrometer size particles in a liquid, such as
proteins in an aqueous solution like the cytosol, we are in
the overdamped realm, and motion follows F � �v. So
the velocity v of an object is directly proportional to the
force F acting on that object at that moment. The propor-
tionality factor � is the coefficient of friction. It is colli-
sions with molecules of the liquid medium that cause the
friction. These same collisions also cause Brownian mo-
tion, i.e., a diffusion D. The connection is expressed by
Einstein’s fluctuation-dissipation theorem: D � kT=�,
where kT represents the average energy in the noiseband.

The remarkable thing about processive motor proteins
is that they literally walk from one unit to the next along a
biopolymer [2,3]. Kinesin is the motor protein that has
been most extensively studied. The motor domain of
kinesin consists of two identical heads, of 340 amino
acids each, that essentially function as feet [see
Fig. 1(a)]. They measure about 7 nm each. Kinesin takes
8 nm steps on the biopolymer microtubule and can take
up to a hundred steps before it detaches (see [4] for an
animation). Kinesin is mostly employed for intracellular
transport. In any cell that is bigger than a bacteria,
kinesin pulls organelles (such as mitochondria) and
vesicles that are filled with chemicals.

Over the past decade increasingly accurate data and
insights on motor proteins have become available (see [5]
and references therein). Concurrently, many researchers
have theorized about the design of underlying Brownian
motor mechanisms (see [6] and references therein).

It is chemical bonds that keep the motor attached to the
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repeatedly broken and reestablished. This attachment and
detachment cannot just take place in an equilibrium
fashion. If that were the case, no forward motion would
occur. Coordinated forward stepping is achieved by cou-
pling the stepping cycle to the hydrolysis of adenosine
triphosphate (ATP) [5]. Under physiological conditions,
such hydrolysis releases about 22kT units of energy.
Generally, the conformational changes that the motor
protein goes through as it catalyzes the hydrolysis of
one ATP also constitute one forward step.

The way the binding sites have been drawn in Fig. 1(a)
indicates how a biopolymer is an anisotropic track.
Kinesin can step in only one direction and this direction
is determined by the orientation of the microtubule.

In the stepping cycle of kinesin, two phases can be dis-
tinguished: (i) A power stroke phase [Fig. 1(a), left-hand
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side], i.e., the reorientation of the attached head. This is
when force is generated, when power is dissipated, and
when a load is being pulled. (ii) A ratcheted diffusion
phase [Fig. 1(a), right-hand side], i.e., the detached head
is randomly diffusing around the neck linker until it hits
the posterior docking site. After attachment, a next step
can commence.

The ratcheted diffusion phase has been characterized
as a ‘‘random diffusional search’’ [3] and has been de-
scribed as ‘‘fluctuational interactions’’ or ‘‘conforma-
tional fluctuations’’ [7]. But, from a physics perspective,
it looks very much like a random walk between a reflect-
ing barrier and an absorbing barrier (where docking
occurs). A 1D random walk that starts at the reflecting
barrier at t�0 will reach the absorbing barrier at a dis-
tance L after an average escape time of hTesci � L2=2D.

Figure 1(b) shows how the stepping process translates
into a profile along a reaction coordinate. The power
stroke occupies a fraction 1�
 and the diffusive stretch
occupies the remaining fraction 
. The trajectory of an
overdamped, Brownian point particle on this profile de-
scribes the progress of the motor protein’s catalytic cycle.
Many authors have identified the position along the reac-
tion coordinate with the position of the center of mass of
the motor protein on the biopolymer [6]. But this may be
inaccurate. The essence of the reaction coordinate is that
the point particle faces a constant, position independent
diffusion coefficient D. For an actual motor protein, the
different segments on the biopolymer may involve very
different D’s. The analysis of the motion on the reaction
coordinate can lead us to durations for the power stroke
and for the diffusive stretch, but not to their distances.

We simplify our analysis of the motion on the reaction
coordinate by a few scaling operations. We take the step
size of kinesin, which equals " � 8 nm, to be our unit
of length. We, furthermore, take D � � � 1, which
implies that energy is expressed in units of kT. In
Fig. 1(b), the force driving the motor protein down the
power stroke section is Fps � G=�1�
�. With a scaled
� � 1, we have a speed in reaction space that is equal
to Fps. The time to complete the power stroke thus equals
Tps � �1�
�=Fps � �1�
�2=G. We neglect diffusion
here and take the power stroke as a deterministic down-
slide. It can be rigorously shown that for G � 20 the
identity Tps � �1�
�2=G is about 95% accurate [8].

The average time to diffuse from a reflecting barrier at
x � 0 to an absorbing barrier at x � 
 equals Tdiff �
1
2


2. For the edges of the flat segment to act like a
reflecting barrier on the left and an absorbing barrier on
the right, we again need a steep slope for the power
stroke. Once more, G � 20 is sufficient to warrant such
an approximation.

For the entire catalytic cycle, we obtain a duration of

T � Tps � Tdiff �
1

G
�1�
�2 �

1

2

2: (1)

With length in units of ", we have, for the average speed
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of the motor protein,

v �

�
1

G
�1�
�2 �

1

2

2

�
�1
: (2)

It is important to realize that a motor protein is funda-
mentally different from an energy converting protein
such as Na,K-ATPase. Na,K-ATPase and many other
proteins transduce energy from one storable form to an-
other. Na,K-ATPase takes the chemical energy in ATP
and turns it into an electrochemical gradient across the
cell membrane. Such conversion from one storable form to
another can never be accomplished with 100% efficiency
if it is to take place within a finite time. Some entropy
production, i.e., heat loss, must occur. The operation of
Na,K-ATPase is also reversible: at low ATP concentra-
tion, Na,K-ATPase can actually let Na ions and K ions
flow down the potential and use part of the released
energy to produce ATP [9]. A motor protein is fundamen-
tally different. A motor protein employs the energy of
ATP hydrolysis to work against friction. The power stroke
can actually be compared best to a bullet falling down in
a bottle of maple syrup. This process converts potential
energy, via friction, into heat and it is obviously irre-
versible. It is also a process that can achieve 100% effi-
ciency. It is therefore reasonable to take the full G � 22
of ATP hydrolysis as the energy for the power stroke.

When a particle in an overdamped, homogeneous me-
dium without other external forces is to be transported
over a distance L along a straight line in a time T, the
most energy efficient way is doing this with a constant
speed v � L=T. This leads to an amount of energy being
dissipated of E � �L2=T. Any variation of speed around
L=T will lead to more energy dissipation. In this sense,
motion in an overdamped medium is fundamentally dif-
ferent from motion in a conservative force field [10,11]. In
the context of Fig. 1(b), this also means that any variation
in slope will lead to a larger Tps and a decreased effi-
ciency. It is likely that 3:5	 109 years of evolution has
led to a smooth power stroke with a constant force.

A common approach to modeling the action of pro-
teins has been to take the minima along the reaction
coordinate and interpret these as representing distinct
chemical states. Noise activated transitions from one
such state to another can then be modeled as Markov
processes. Chemical kinetics assumes that such transi-
tions are instantaneous. This assumption may be adequate
when evaluating how, for instance, the aforementioned
Na,K-ATPase converts energy [12]. In the case of
Na,K-ATPase, the actual movement and the energy in-
vested into overcoming friction is of negligible signifi-
cance for the energetics. But, for a motor protein, fast and
efficient transport against friction is the entire point.

Suppose that a certain transition in the catalytic cycle
of kinesin requires a time �t and involves a displacement
�x of the center of mass. The friction force that is over-
come in that transition is Ffr � ��x=�t, where � repre-
sents the coefficient of friction. The energy dissipated in
148104-2
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the displacement equals E � Ffr�x � ���x�2=�t. It is
obvious that the assumption of an instantaneous transi-
tion (i.e., �t ! 0) with finite displacement �x leads to the
absurd implication of this step requiring an infinite
amount of energy. The Brownian noise that is jolting
the protein around may obscure the issue. However, it
has been shown rigorously that this added noise does
not alter the energy transduction from ATP hydrolysis
to motion against friction [10,11]; the Brownian kicks
fluctuate as much energy in as they dissipate out. F � �v
for the friction and P � �v2 for the dissipated power still
hold. It is therefore important, even in a Brownian envi-
ronment, to convert the available energy into motion in as
smooth a fashion as possible. Stepwise transitions are
inefficient.

The motor protein is subject to diffusion and its step-
ping is therefore a stochastic process. The average speed
is the first moment. But there is also information about
the underlying dynamics in the second moment, i.e., the
variations in speed from one period to another. What
researchers have been doing boils down to the follow-
ing. Take the motor protein and let it run over multiple
periods from x � 0 at t � 0 to x � L. The different
arrival times are recorded. If you think of the motor
proteins all starting together at x � 0 at t � 0, then it is
obvious that they will undergo a spreading in the course
of drifting toward x � L. This spreading will be de-
scribed by a widening Gaussian distribution. The center
of this Gaussian moves with a speed v according to (2).
An effective diffusion coefficient for the spreading can be
expressed as follows [13]:

Deff �
1

2

L2��t�2

hti3
: (3)

Here ��t�2 represents the variance in the arrival times at
L, and hti represents the average arrival time. For a
sequence of subsequent stochastic processes the time
variance of the total is the sum of the individual time
variances. So with a distance that is � times as long, L,
��t�2, and hti all increase with that same factor �, leaving
Deff in (3) eventually unaffected as it should be. It is
important to realize that Deff is different from the dif-
fusion coefficient D that indicates the strength of the
Brownian jolts. Deff describes the spread of the drifting
particles and, as such, it also takes account of the shape of
the energy profile. Experimentalists have commonly ex-
pressed the ‘‘diffusive spreading’’ during transport in
terms of a dimensionless quantity that expresses a diffu-
sion-drift ratio and is called the randomness r [14]:

r �
2Deff

v"
: (4)

Here v is again the average speed and " is the length of
a period. Different mechanisms lead to different values
of r. In 1994, Svoboda et al. measured the randomness for
moving motor proteins [14] and they used their data to
rule out certain models and mechanisms.
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Because we consider the power stroke to be a deter-
ministic downslide, the only source of stochasticity in our
model is the flat segment. In order to obtain Deff and r, we
need to evaluate the time variance, ��t�2 � ht2i � hti2,
for a diffusive trajectory on a flat stretch from a reflecting
barrier at x � 0 to an absorbing barrier at x � 
. There
are standard and straightforward methods to compute the
second moment [8]. In this case, we obtain ht2i � 5

12

4.

So for the variance we get ��t�2 � 1
6


4. Taking L � 1 in
formula (3), we find

Deff �
1
12


4

�1G �1�
�2 � 1
2


2�3
: (5)

For the randomness, this leads to

r �
1
6


4

�1G �1�
�2 � 1
2


2�2
: (6)

Taking the diffusion on the downslide into account leads
to extra terms in the numerator of (6). But with G in the
physiological range �� 20�, these terms are again negli-
gible. In [13] it is shown how v and Deff can be evaluated
exactly on any tilted periodic potential in the presence of
a constant nonzero D everywhere.

Before we check our model against experimental re-
sults, there is a complication we have to take care of.
It appears that, in practice, 5% to 10% of kinesin’s steps
are backward [15]. In the framework of our model, the
most likely explanation for this would be that the for-
ward power stroke is followed by an accidental anterior
docking of the detached head. This would then lead to a
subsequent backward power stroke and an observed back-
ward step. In order to relate our model to the observed
speed vobs, we have to multiply v in (2) with p� q,
where q equals the backward stepping probability, and
p � 1� q is the forward stepping probability. For the
randomness one derives [16]

robs � �p� q�r�
4pq
p� q

: (7)

Ma and Taylor used a variety of biochemical methods
to determine conformational states and transition rates in
the stepping cycle of kinesin. In [17] they present a
picture that looks similar to our Fig. 1(a). They found
Tps=Tdiff � 0:75. We will call this ratio �. From Eq. (1) it
is easily derived that the model of Fig. 1 leads to � �
Tps=Tdiff � 2�1� 1


�
2=G. We thus get for the variable 



 �

�
1�

�����������
1

2
G�

r �
�1
: (8)

For G � 22, we obtain 
 � 0:26.
When we take the above formula for 
 and substitute it

in Eqs. (2) and (6), we obtain for speed and randomness in
terms of G and �

v � 2
�1�

����������
1
2�G

q
�2

1� �
; r �

2

3�1� ��2
: (9)
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Remarkably, G cancels out of the expression for the
randomness r. With � � 0:75 and G � 22, we get v �
17 and r � 0:22.

In a large number of identical experiments at saturating
ATP concentration, it was found that vobs � 810 nm=s
and robs � 0:44 [15]. Both results carried a standard error
of about 4%. Using r � 0:22, Eq. (7), and p� q � 1, we
obtain a simple quadratic equation for the backstep
probability q that yields q � 5:8% for � � 0:75. As was
mentioned before, in the experiments described in [15],
the individual 8 nm steps could actually be resolved. The
experimentally observed backstep probability was be-
tween 5% and 10%. The prediction of our model is within
this range.

In the previous section, we already conjectured that a
backward step occurs when the detached head acciden-
tally docks on the anterior binding site instead of on the
posterior site. This picture does not correspond to an
accidental sequence of Brownian kicks that drives the
particle in Fig. 1(b) up the slope. With a noise strength of
1kT, the likelihood of such an accidental mounting of the
barrier of about 20kT to the left is many orders of mag-
nitude smaller than the likelihood of sliding down the
20kT well to the right. Incorporating the above described
backstepping scenario would require the addition of a
second dimension to the 1D reaction space of Fig. 1(b).

Much experimental work has focused on the duty
ratio [5], i.e., the fraction of time that a head is attached
to the biopolymer. It should be pointed out that, in our
model, it is entirely possible for the trailing head to
remain attached for any part of the power stroke. For
Tps=Tdiff � 0:75 this means that the model is consistent
with any duty ratio between 50% and 70%.

If vobs is to be expressed in meters per second, vobs �
�p� q�v needs to include a redimensionalization factor
D=" on the right-hand side, i.e., vobs � �p� q�Dv=".
Given the observed values for vobs and ", and the derived
values for v and q, this formula allows us to estimate D.
Through � � kT=D we then also obtain the average
internal friction of the motor protein. For G � 22,
� � 0:75, and vobs � 810 nm=s, we find D � 4:3	
10�16 m2=s and an associated friction � of about
10�5 Ns=m.

The estimate D � 4:3	 10�16 m2=s is reasonable. It is
about 4 orders of magnitude smaller than the diffusion
coefficient for a freely dissolved kinesin size protein in
the cytosol [2]. With � � 6��r for the friction of a
spherical bead and �H2O � 10�3 kg=ms for the viscosity
of water, one easily verifies that � � 10�5 Ns=m is
equivalent to the friction of a 400 �m bead in water. So
the hydrodynamic friction of the submicrometer bead in
the aforementioned experiments can be legitimately and
safely neglected as a factor in the motion.

Motor protein action has most commonly been mod-
eled as a succession of discrete chemical, i.e., Markov,
steps. Many free parameters are involved in fitting theory
148104-4
to experiment. This makes these models to some extent
immune to experimental falsification. However, for rea-
sons pointed out in this Letter, such Markov descriptions
may be fundamentally unrealistic for the modeling of
motor protein action. Diffusive motion along a reaction
coordinate underlies chemical kinetics. Such diffusive
motion is the basis for the model presented in this
Letter. The construction of the piecewise linear profile
in Fig. 1(b) was based on the observed stepping mecha-
nism and guided by the premise that natural selection
must have led to an optimal shape. The resulting formulas
are simple and concise, there are no free parameters, and
the inputs are observed data. The model correctly predicts
other observed data. On processive motor proteins other
than kinesin, such as myosin V, dynein, and RNA poly-
merase, the available experimental data are less abundant.
The above model should, in principle, also apply to these
motor proteins.

The animation of Ref. [4] was created by R. D. Vale,
R. A. Milligan, and G. Johnson, and was included as
supplementary material to Ref. [3] of this Letter.
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[10] I. Derényi, M. Bier, and R. D. Astumian, Phys. Rev. Lett.

83, 903 (1999).
[11] M. Bier, Acta Phys. Pol. B 32, 287 (2001).
[12] B. Robertson and R. D. Astumian, J. Chem. Phys. 94,

7414 (1991).
[13] P. Reimann et al., Phys. Rev. Lett. 87, 010602 (2001).
[14] K. Svoboda, P. P. Mithra, and S. M. Block, Proc. Natl.

Acad. Sci. U.S.A. 91, 11782 (1994).
[15] K. Visscher, M. J. Schnitzer, and S. M. Block, Nature

(London) 400, 184 (1999).
[16] D. R. Cox, Renewal Theory (Methuen & Co., London,

1962).
[17] Y. Z. Ma and E.W. Taylor, J. Biol. Chemi. 272, 724 (1997).
148104-4


