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Kinetics from Nonequilibrium Single-Molecule Pulling Experiments
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National Institutes of Health, Bethesda, Maryland 20892-0520 USA

ABSTRACT Mechanical forces exerted by laser tweezers or atomic force microscopes can be used to drive rare transitions in
single molecules, such as unfolding of a protein or dissociation of a ligand. The phenomenological description of pulling
experiments based on Bell’s expression for the force-induced rupture rate is found to be inadequate when tested against
computer simulations of a simple microscopic model of the dynamics. We introduce a new approach of comparable complexity
to extract more accurate kinetic information about the molecular events from pulling experiments. Our procedure is based on the
analysis of a simple stochastic model of pulling with a harmonic spring and encompasses the phenomenological approach,
reducing to it in the appropriate limit. Our approach is tested against computer simulations of a multimodule titin model with
anharmonic linkers and then an illustrative application is made to the forced unfolding of I27 subunits of the protein titin. Our
procedure to extract kinetic information from pulling experiments is simple to implement and should prove useful in the analysis
of experiments on a variety of systems.

INTRODUCTION

Pulling experiments using atomic-force microscopes

(AFMs) or laser tweezers are widely used to probe rare

molecular events, such as protein unfolding and ligand

dissociation. In such experiments, an anchored molecule or

molecular assembly is attached to a pulling spring, possibly

via a linker molecule, as shown in Fig. 1 A. The pulling

spring is then moved away from the anchored molecule,

typically at a constant velocity v, building up mechanical

stress in the system. Eventually, this forces a molecular

transition, such as the dissociation of a molecular complex

(Florin et al., 1994; Merkel et al., 1999), unfolding of

a protein (Kellermayer et al., 1997; Marszalek et al., 1999;

Rief et al., 1997; Tskhovrebova et al., 1997), or unwrapping

of a higher-order structure (Cui and Bustamante, 2000).

In this paper, we consider the problem of extracting

kinetic information from such experiments. Specifically, we

are interested in obtaining the intrinsic rate of a rare mo-

lecular event along the pulling coordinate. Most currently

used procedures to analyze pulling experiments (see e.g.,

Evans and Ritchie, 1997; Evans et al., 1991; Rief et al., 1997,

1998) involve an extension of Bell’s expression (Bell, 1978)

for the rate coefficient for rupture in the presence of a time-

dependent external force F(t):

kðtÞ ¼ k0 exp bFðtÞxz
� �

; (1)

where k0 is the intrinsic rate constant we would like to

determine, xz is the distance from the free-energy minimum

to the barrier, and b�1 ¼ kBT with kB Boltzmann’s constant

and T the absolute temperature. The attractive feature of these

phenomenological procedures is their apparent generality.

No assumption is made concerning the nature of the dy-

namics (it is subsumed into k0), and the underlying free-

energy surface is characterized by a single parameter (xz).
However, by analyzing simulated data obtained from ar-

guably the simplest microscopic model of pulling experi-

ments, it will be shown below that the phenomenological

description is inadequate in the experimentally relevant

pulling regime. If the phenomenological approach, with no

adjustable parameters, does not work even in such a simple

context, it can hardly be expected to yield reliable intrinsic

rate constants when applied to actual experimental data.

The purpose of this paper is to introduce a new procedure

for analyzing experimental pulling data that is more reliable

than the phenomenological approach but has comparable

ease of implementation. Our approach has just one more

parameter (i.e., the activation free energy) and is based on

a rigorous analysis of a microscopic model that is sufficiently

simple to yield analytic results but nevertheless captures

the key features of pulling experiments. In this model,

the system diffuses on a harmonic free-energy surface with

a single sharp barrier and is pulled by a harmonic spring

moving at a constant velocity. We obtain analytic expres-

sions for the average force at rupture and the probability

distribution of rupture forces. These expressions are general-

izations of analogous results obtained within the framework

of the phenomenological approach. Based on these results

we propose a procedure for analyzing experimental data.

After testing it against computer simulations of a many-

particle microscopic model of a multimodule protein with

anharmonic linkers, an illustrative application is made to the

forced unfolding of linked I27 modules of the protein titin

(Carrion-Vazquez et al., 1999).

In this article, we have taken the first step in removing the

most serious deficiencies of phenomenological descriptions

of force-induced rupture that are based on Bell’s formula

(Bell, 1978) for the rate coefficient in the presence of a time-
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dependent force. More sophisticated approaches with fewer

assumptions can be readily envisaged but are difficult to

implement. For example, one could first obtain the free

energy profile along the pulling coordinate using the

formalism we recently developed (Hummer and Szabo,

2001) based on the seminal work of Jarzynski (1997). If it is

assumed that the dynamics on this surface is diffusive, the

diffusion coefficient could be obtained by fitting the

numerically calculated rupture-force distributions to the

experimental ones. Having determined both the diffusion

coefficient and the free energy surface, the intrinsic rate

could be found using Kramers’ theory (Kramers, 1940).

Unfortunately, many practical problems must be overcome

before such a procedure would become viable.

The outline of this paper is as follows. After reviewing

the phenomenological description of force-induced rupture,

we introduce our microscopic model and obtain accurate

analytic expressions for the rupture-force probability distri-

bution and the average force at rupture. These and the

corresponding results obtained within the framework of the

phenomenological approach are compared with Brownian

dynamics simulations of the model. Our approach is next

tested against computer simulations of a multimodule titin

model with anharmonic linkers and then applied to ex-

perimental data for the unfolding of titin. Finally, we present

some concluding remarks.

THEORY

Phenomenological description of the
kinetics of rupture

We consider a system that is pulled over a barrier by the

application of a time-dependent force F(t). If the free-energy
surface has a single well, as shown in Fig. 1 B, this process is
irreversible. In this case, the phenomenological formalism

based on an approximate expression for the rate constant in

the presence of an external force (Bell, 1978) can be

reformulated in a simple way as follows. The survival

probability S(t) of the system (i.e., the probability that

rupture has not yet occurred at time t) is assumed to satisfy

the first-order rate equation with a time-dependent rate

coefficient

dS

dt
[ _SSðtÞ ¼ �kðtÞSðtÞ; (2)

and thus

SðtÞ ¼ exp �
ð t

0

kðt9Þ dt9
� �

: (3)

The time-dependent rate coefficient k(t) is given by Bell’s

expression (Bell, 1978) generalized to time dependent

forces, Eq. 1. The probability distribution of lifetimes t* is

� _SSðt�Þdt�, so that the mean lifetime is t� ¼ �
R ‘

0
t _SSðtÞdt

¼
R ‘

0
SðtÞdt. The probability distribution of forces F at

rupture is related to the probability distribution of lifetimes

by pðFÞdF ¼ � _SSðt�Þdt�. This formalism is generalized for

multiple covalently linked subunits (such as titin) in

Appendix A.

Even for time-independent forces, Bell’s expression is

only valid for diffusive barrier crossing in the limit of small

forces (Dembo et al., 1988). This is one of the reasons why

the phenomenological approach has a limited range of

validity. Another reason is that Bell’s expression does not

take into account the fact that the molecular coordinate

fluctuates under the influence of the combined molecular and

pulling potentials. In this article, we test the applicability of

the phenomenological procedure for arguably the simplest

microscopic model of the kinetics of rupture, and then

propose a new procedure for analyzing experimental data

that leads to more accurate estimates of the intrinsic rate

FIGURE 1 (A) Schematic illustration of a pulling exper-

iment. (B) Free energy surface of the model of rupture. (C)

Determination of the effective pulling spring constant from

force-extension curves for a multimodule protein consisting

of independently unfolding domains, such as titin.
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constant k0. Before doing this, let us give a simple example

of the phenomenological formalism when F(t) is a linear

function of time: bF(t) ¼ ksvt where v is the velocity of

pulling, and ks is a harmonic force constant scaled by kBT ¼
b�1. Using Eqs. 1 and 3, we have

SðtÞ ¼ exp � k0

ksvx
z ðe

ksvx
z
t � 1Þ

� �
: (4)

The probability distribution of rupture forces ½ pðFÞdF ¼
� _SSðt�Þdt�� is

pðFÞ ¼ bk0
ksv

exp bFx
z � k0

ksvx
z ðe

bFx
z

� 1Þ
� �

: (5)

This result was first obtained in the pioneering work of

Schulten and co-workers on the theory and simulation of

pulling experiments (1997).

The mean force at rupture is

bF ¼ ksv�tt ¼ ksv

ð‘

0

SðtÞdt ¼ 1

xz
exp

k0

ksvx
z

� �
E1

k0

ksvx
z

� �
;

(6)

where E1ðxÞ ¼
R ‘

x
e�tt�1 dt is the exponential integral. This

result was obtained previously by Gergely et al. (2000). For

low velocities, bF � ksv=k0; for high velocities, we obtain

the following relation between the intrinsic rate constant and

the average force at rupture

bFx
z � lnðksvx

z
e
�g
k
�1

0 Þ; (7)

where g ¼ 0.5772. . . is the Euler-Mascheroni constant.

The most probable force at rupture, bFmaxx
z [ ksvtmax,

satisfies this relation with g set to zero, as previously found

by Izrailev et al. (1997). Thus, plots of the mean and most

probable force versus lnv will have the same slope but

different intercepts. tmax is the most probable time at rupture

which satisfies S̈ðtmaxÞ ¼ 0, and by using Eq. 3, it is found to

be the solution of the equation _kkðtmaxÞ ¼ k2ðtmaxÞ. In the

limit where Eq. 7 is valid (i.e., for ksvx
z=k0 J 0:1), the

difference between the maximum of the force distribution

and the mean force is Fmax � F � kBTg=x
z, independent of

the pulling velocity. The asymmetry of the rupture-force

distribution thus provides direct information about the

distance to the barrier, xz.
Equation 7 relates the intrinsic rate constant k0 to

a measurable quantity, namely the force-loading rate ksv
and the mean force at rupture F. Specifically, the phenom-

enological approach predicts that at high pulling speeds the

average force grows linearly with the logarithm of the force-

loading rate, F ; lnðksvÞ, as found by Evans and Ritchie

(1997) and Izrailev et al. (1997). In the next section, we

investigate the range of applicability of this expression by

comparing it with simulations and the essentially exact

solution for a simple microscopic model of rupture.

Microscopic theory of the kinetics of rupture

We assume that along the pulling coordinate x the potential
of mean force is given by

Vðx; tÞ ¼ V0ðxÞ1Vsðx � vtÞ; (8)

where V0(x) is the molecular free energy surface of the type

shown in Fig. 1 B. The molecular coordinate x is coupled to

the pulling apparatus, which is moving at velocity v, through
a time-dependent external force, �@Vs(x � vt)/@x. We

further assume that x happens to be a good reaction

coordinate so that the rate of escape along this coordinate

in the absence of pulling gives the intrinsic dissociation rate

of the system. This is rigorously valid only if the dynamics of

all other degrees of freedom turn out to be sufficiently fast.

We assume that the pulling force is harmonic,

bVsðx � vtÞ ¼ ð1= 2Þksðx � vtÞ2, where ks is an effective

force constant (divided by b�1 ¼ kBT) which is determined

not only by the cantilever force constant of the pulling

apparatus but also by the properties of the molecular linker.

We further assume that the molecular free energy surface is

given by

bV0ðxÞ ¼
1

2
kmx

2 ðx\x
zÞ

�‘ ðx$ x
zÞ
;

�
(9)

where km is the molecular spring constant. Assuming

a cusplike barrier (see Fig. 1 B) at x ¼ xz is not as limiting

as it may appear at first sight. Because of the snapping

motion at rupture, experiments contain limited informa-

tion about the shape of the free energy surface near the

transition state. Generalizations to more complex free energy

surfaces are straightforward, but do not lead to analytic

expressions for observables such as the distribution of forces

at rupture.

Finally, we assume that the dynamics is diffusive in nat-

ure, i.e., the system undergoes Brownian motion on the free

energy surface. Trajectories for our system can be generated

by solving a stochastic differential equation, _xxðtÞ ¼
�Dkmx � Dksðx � vtÞ1RðtÞ, where D is the diffusion

coefficient, and R(t) is a Gaussian random force with zero

mean, R� ðtÞ ¼ 0, and variance RðtÞRðt9Þ ¼ 2Ddðt � t9Þ. In
practice, this means that after a short time step Dt, the

position is given by xðt1DtÞ ¼ �½kmxðtÞ1 ksðxðtÞ�
vtÞ�Dt1 g

ffiffiffiffiffiffiffiffiffiffiffi
2DDt

p
where g is a Gaussian random number

with zero mean and unit variance (i.e., picked from the

distribution e�g2=2=
ffiffiffiffiffiffi
2p

p
). Equivalently, the probability distri-

bution of finding the system at x at time t satisfies the

Smoluchowski equation (Zwanzig, 2001).

The rate of rupture in the absence of pulling can be obtained

from Kramers’ theory (Kramers, 1940). For sufficiently high

barriers, the kinetics is exponential with a rate constant given

by

k
�1

0 ¼ 1

D

ð
z

e
bV0ðxÞ dx

ð
well

e
�bV0ðxÞ dx; (10)
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where the first integral is over the barrier region, and the

second integral is over the free-energy minimum. Applying

this to our potential we find

k0ðxz; kmÞ � ð2pÞ�1=2
Dk

3=2

m x
z
e
�bDG

z

; bDG
z ¼ kmðxzÞ2

2
:

(11)

Our goal is to extract this rate constant from pulling experi-

ments. To do this we must calculate the statistics of the force

at rupture

bF ¼ �ksðxz � vt
�Þ; (12)

where t* is the lifetime of our system defined as follows. The

system diffuses on the time-dependent potential Vðx; tÞ ¼
ð1=2Þkmx2 1 ð1=2Þksðx � vtÞ2 for x\ xz, and V(x, t) ¼ �‘

for x$ xz. At t¼ 0 we start from an equilibrium distribution

for x\xz and are interested in the survival probability of the
system S(t) in the region x\ xz. The distribution of lifetimes

t* (and therefore the forces at rupture) is then given by

� _SSðt�Þ. Although there is no exact analytic solution to this

simple problem, we shall now obtain an accurate solution for

the entire range of parameters.

Before rupture, the pulling force will fluctuate about

bFðtÞ ¼ �ks½�xxðtÞ� vt� where �xxðtÞ is the average position at

time t. For our model, �xxðtÞ satisfies an ordinary differential

equation since RðtÞ ¼ 0. For the initial condition �xxð0Þ ¼ 0,

we find

�xxðtÞ ¼ ve
Dk

ðDkt1 e
�Dkt � 1Þ; k ¼ km 1 ks; (13)

with ve ¼ vks/k. At short times (Dkt � 1), �xxðtÞ;Dvkst
2=2;

at long times, �xxðtÞ; vet, so the molecular coordinate moves

with a constant effective velocity ve.
When the pulling velocity is sufficiently fast, the

fluctuations about �xxðtÞ are irrelevant and the survival

probability is simply given by S(t) ¼ 1 for t\ t and zero

otherwise, where t is the time for �xxðtÞ to reach xz, �xxðtÞ ¼ xz.
Approximately solving �xxðtÞ ¼ xz for t, we find

bFðv ! ‘Þ � kmx
z
1

ksv

Dk
½1� e

�ð2Dk2xz=ksvÞ1=2 �; v
1=2
; (14)

so that the average force is proportional to the square root of

the velocity for large velocities. This result is not general and

would be affected by the inclusion of a linker. Moreover, as

the pulling velocity increases, motions along degrees of

freedom other than the pulling direction are given less time

to relax, ultimately requiring inclusion of additional

coordinates in the model.

If the pulling velocity is sufficiently slow so that the

system ruptures when the activation energy is still large, then

we can use an adiabatic approximation analogous to what is

done in quantum mechanics. If we make the substitution

DðtÞ ¼ xðtÞ � �xxðtÞ, our problem reduces to the dynamics of

a harmonic oscillator with effective force constant k ¼ ks 1

km in the presence of a time-dependent barrier at xz � �xxðtÞ. If
the motion is slow, the survival probability is given by

SðtÞ ¼ exp �
ð t

0

k0½xz � �xxðt9Þ; k�dt9
� 	

; (15)

where k0(x
z; k) is the intrinsic rate constant for a fixed barrier

at xz given in Eq. 11, with km replaced by k ¼ km 1 ks, the

sum of pulling and molecular spring constants. If we use the

long time limit �xxðtÞ � vet, Eq. 15 becomes:

SðtÞ ¼ exp � k0e
�ksðxzÞ2=2

ksvx
zðkm=kÞ3=2

ðeksvx
z
t�ðksvtÞ2=ð2kÞ � 1Þ

" #
; (16)

where we used Eq. 11 for the intrinsic rate constant k0.
The probability distribution of forces ½pðFÞdF ¼

� _SSðt�Þdt�� obtained analytically from Eqs. 12 and 16 is

pðFÞ ¼ ðksvÞ�1½� _SSðt�Þ�
t
�¼ðbF1ksx

zÞ=ksv: (17)

The cumulative probability distribution of rupture forces is

given by the survival probability,

PðF\F0Þ ¼
ðF0

0

pðFÞdF ¼ 1� S
bF0 1 ksx

z

ksv

� �
: (18)

To find an expression for S(t) valid over the entire velocity

range, the simplest procedure (which turns out to be accurate

when compared to computer simulations) is to use Eq. 16

only for times t\ t before the average trajectory reaches the

barrier, �xxðtÞ ¼ xz, and put S(t) ¼ 0 for t[ t. Consequently,

the average force at rupture is given by

bF ¼ �ks x
z � v

ðt

0

SðtÞdt
� �

: (19)

The integral in Eq. 19 can be evaluated for very small

velocities to give

bFðv ! 0Þ � ksv

k0ðk=kmÞ3=2
� ksx

z
: (20)

If the molecular spring is stiff compared to the pulling spring,

km � ks, the average force at rupture is zero approximately

at v ¼ k0x
z.

For intermediate velocities (i.e., before the v1/2 limit is

reached) we find

bF ¼ kmx
z � 2k ln

k0e
g1kmðxzÞ2=2

ksvx
zðkm=kÞ3=2

" #1=2

; k ¼ km 1 ks:

(21)

This and Eq. 16 are the key relations used to analyze

experimental data. These are generalizations of the corre-

sponding phenomenological results given in Eqs. 4 and 7, to

which they reduce in the limit of ksðxzÞ2 ! 0 and

km=ks ! ‘. Thus the phenomenological approach is

a somewhat unphysical special case of ours.

In summary, our theory predicts three pulling regimes: 1),

In the limit of slow pulling speeds (v � k0x
z), rupture is

slowed down because the pulling spring holds back the

8 Hummer and Szabo
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molecular coordinate (Heymann and Grubmüller, 2000), and

the mean force at rupture is negative, bF � �ksx
z [see

Eq. 20]. 2), In the limit of fast pulling (v � k0
ðxzksÞ�1

expðbDGzÞ with bDGz ¼ km(x
z)2/2 the height of

the free energy barrier), stochastic motion is irrelevant, and

the average force at rupture grows asymptotically as v1/2 with
the pulling velocity (see Eq. 14), as seen in the simulations of

Evans and Ritchie (1997). 3), For intermediate pulling

speeds that are typical for most experiments ½k0xz\
vK k0ðxzksÞ�1

exp ðDGz=kBTÞ�, both stochastic fluctua-

tions and pulling are relevant. In this regime, the mean force

at rupture is given by Eq. 21 and is a nonlinear function of

the logarithm of the force-loading rate ksv. These regimes are

related but not identical to the activation, drift, and diffusion

regimes first discussed by Izrailev et al. (1997).

In typical experiments, the probe molecule and force

measurement apparatus are connected by a linker molecule,

affecting the behavior of the system under pulling (Evans

and Ritchie, 1999). If the linker relaxes rapidly compared to

rupturing and its force-extension curve is sufficiently

harmonic then the microscopic theory is applicable when

the pulling spring constant ks is replaced by an effective

spring constant describing the softened combination of

pulling spring and linker. If the spring describing the

molecular process of interest is stiff compared to the

combination of pulling and linker spring, km � ks, then

the effective spring constant is given simply by the slope of

the average force F with respect to the extension x ¼ vt
before rupture, as illustrated in Fig. 1 C, and discussed in

more detail in Appendix B.

The above theory describes the irreversible rupture of

a single subunit. Titin, however, consists of multiple

folded modules connected by short linker peptides. In

pulling experiments on natural and synthetic titin con-

structs, the modules are sequentially unfolded. If these

unfolding events are uncorrelated, we can immediately

apply the formalism of this section by simply multiplying

k0 by the appropriate statistical factor. For a construct

containing N subunits, the rate of unfolding of the first

subunit in such construct is N times faster than it would be

if the construct only contained a single subunit, and so on

(Evans and Ritchie, 1999; Makarov et al., 2001; Zhang

et al., 1999). Therefore, our theory can be applied to the i-
th unfolding event by simply replacing k0 by (N � i 1
1)k0 in Eqs. 16 and 21.

This implies that the average time between rupture events

is shorter for a longer titin construct (Makarov et al., 2001;

Zhang et al., 1999), resulting in smaller measured rupture

forces (Evans and Ritchie, 1999) for the long titin constructs

in laser-tweezer pulling experiments (Kellermayer et al.,

1997) compared to shorter constructs in AFM experiments

(Carrion-Vazquez et al., 1999). In addition, every unfolding

event leads to softening of the effective spring constant. This

reduces the average rupture force, as previously discussed by

Evans and Ritchie (1999).

RESULTS AND DISCUSSION

Microscopic model

As a first illustration, we test the phenomenological

formalism and the microscopic theory by comparing it with

exact results obtained from Brownian dynamics simulations

of a model system over a broad range of pulling velocities v.
We choose ks ¼ 1, km ¼ 10, D ¼ 1, b ¼ 1, and xz ¼ 1,

corresponding to a 5kBT barrier to rupture. As initial con-

dition we use an equilibrium distribution on the interval �‘

\ x\ xz. Initially, the time step is set to Dt ¼ 10�4, but as

the barrier is approached, Dt is reduced linearly in xz � x(t)
to 10�6 (Pastor et al., 1996).

Fig. 2 shows the force at rupture as a function of the

pulling speed. Qualitatively, we find the three pulling

regimes predicted by our theory. In an intermediate range

of pulling velocities (10�1\ v\ 10), in which experiments

will typically be conducted, the average force depends

approximately linearly on the logarithm of the pulling

velocity. Below, the average force at rupture becomes

negative and linearly dependent on the pulling speed. In the

deterministic limit above, the force at rupture grows as v1/2.
Quantitatively, we find that the mean force estimated from

Eq. 19 is in good agreement with the simulation data over the

whole range of pulling velocities.

The phenomenological result based on an explicitly time-

dependent force is in good agreement with the simulation

data only for relatively small pulling speeds, 0.1\ v\ 1.

The analytic approximation to the microscopic theory, Eq.

21, covers a broader pulling regime (0.1 \ v \ 10).

However, unlike the full microscopic theory, Eq. 19, it does

not reproduce the rupture forces in the deterministic limit at

the highest pulling speeds (v [ 100) and the transitions to

FIGURE 2 Average force at rupture as a function of pulling velocity from

simulation and theory. Symbols show reference results from Brownian

dynamics simulations for ks ¼ 1, km ¼ 10, D ¼ 1, b ¼ 1, and xz ¼ 1, with

statistical errors smaller than the symbol size. The solid line is obtained by

integrating the approximate survival time distribution, Eq. 19. The long-

dashed line shows the estimate of the mean force from the analytic

approximation to the microscopic theory, Eq. 21. The short-dashed line is

the phenomenological result for the average force at rupture, Eq. 7. A

vertical arrow indicates a pulling speed of k0x
z at the crossover from

negative to positive rupture forces.
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negative rupture forces at the lowest pulling speeds (v \
10�2). As expected from the theory, the rupture force curve

crosses zero at a pulling velocity v � k0x
z.

Pulling of a multimodule titin model with
anharmonic linkers

The first step in our procedure to analyze experimental

pulling data is to extract effective spring constants ks from

the slope of force-extension curves just before rupture. The

remaining model parameters (km, x
z, and k0) are then fitted

to the data for rupture forces as a function of pulling speed.

This approach is correct when both the molecular coordinate

and the pulling apparatus (including the linker) respond

linearly to force. In many practical applications, in particular

to biopolymers, this assumption may appear to be too

restrictive. Here, we show that our procedure works well

even for anharmonic linkers described by wormlike-chain

models, and for systems with multiple sequentially rupturing

subunits or bonds.

To test the applicability of the theory, we mimic unfolding

of the protein titin by simulating an anharmonic model and

comparing the results to the theory, Eq. 21. In this titin

model, N ¼ 10 independently unfolding modules are

connected by linkers. In the folded state, the molecular

coordinates move on a harmonic potential. Upon unfolding,

each unit converts to a peptide coil described by an ap-

proximate wormlike-chain potential (Marko and Siggia,

1995). Details are given in Appendix C.

A simulated pulling trace is shown in Fig. 3. The force-

extension curves are now nonlinear with 10 sharp peaks,

each corresponding to rupturing of a module. From a straight-

line fit to the force-extension curves just before each rupture

event i, as illustrated in Fig. 1 C, we extract an effective force

constant ks(v, i) at pulling velocity v using Eq. B3. The

velocity-dependent ks(v, i) are obtained by averaging the

slopes independently at each pulling velocity for the first (i¼
1), second (i ¼ 2), etc., rupture event. Our previous theory

for N¼ 1 can be extended to analyze the i-th rupture event by
using an intrinsic rate constant (N � i 1 1)k0 instead of k0.
To test whether our procedure for determining the effective

force constant is applicable to this multimodule system with

anharmonic linkers, we compare in Fig. 4 the observed

forces at rupture to those calculated from Eq. 21. We find

good agreement of the average forces from simulation and

theory. In particular, the theory correctly predicts that the

average force increases with the order of the unfolding event.

However, that increase in the rupture force is significant only

for the last four to five rupture events. We conclude from this

that the simple microscopic theory, Eqs. 19 and 21, is

applicable even for multimodule systems with anharmonic

linkers if effective spring constants are used, and the

appropriate statistical factor is used to multiply k0.
Ideally, experiments should be analyzed by fitting the

average force (and, even better, the distribution of forces)

for the i-th rupture event using our theory with k0 !
ðN � i1 1Þk0. However, with limited data, it is necessary to

average rupture forces over all sequential events. For a model

system with 10 titin modules with an average effective spring

constant of kBTks ¼ 5.3 pN/nm, we fit the microscopic

theory Eq. 21 to the average force as a function of pulling

velocity, and obtain an apparent rate k~0 that is about ten times

faster than the actual rate k0. In general, we expect for the

apparent rate that k0 K k~0 KNk0 for a system with N
identical and independently rupturing subunits.

FIGURE 3 (Top) Schematic representation of a titin model with N ¼ 5

modules. Jagged lines indicate harmonic linkers connecting the C and N

termini. Smooth lines represent the folded (units 1, 2, 3, and 5) and unfolded

titin modules (unit 4), and a linker molecule connecting the titin construct to

the AFM spring. In the folded state, the modules respond harmonically with

a tight spring constant km; in the unfolded state, they respond as wormlike

chains. (Bottom) Force-extension curve from a pulling simulation at a pulling

speed of 0.1 mm s�1 for a model with N ¼ 10 modules. Peaks correspond to

unfolding of single titin molecules.

FIGURE 4 Force at rupture as a function of pulling velocity for a construct

of 10 independently unfolding modules. The construct is connected to the

pulling spring via a wormlike-chain linker. After unfolding, each module

converts irreversibly into a wormlike-chain polymer. Forces are shown for

the first, fifth, and tenth rupture event (symbols), and compared to the theory

(lines), Eq. 21, modified for the multimodule structure of the system. Error

bars correspond to one estimated standard deviation. The effective pulling

spring constants in Eq. 21 were determined from straight-line fits to the

force-extension curves before rupture, and averaged independently for each

pulling velocity and the first, second, etc., rupture event. The inset shows

a scatter plot of average forces from simulation and Eq. 21 for all velocities

and rank order of rupture events.
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Analyzing an experiment: Unfolding of titin

A classic application of single-molecule force pulling ex-

periments is the mechanical unfolding of proteins. One of

the most widely studied proteins is titin (Kellermayer et al.,

1997; Marszalek et al., 1999; Rief et al., 1997; Tskhovrebova

et al., 1997). Carrion-Vazquez et al. (1999) recently reported

measurements of a recombinant construct of 8 tethered I27

titin molecules, each with 89 amino acids. We use the titin-

unfolding data of Figs. 2 and 3 of (Carrion-Vazquez et al.,

1999) to illustrate the utility of the phenomenological

approach and the microscopic theory. Because we have

access to only limited data, we will average over all eight

events assuming that the force-induced unfolding of multiple

covalently linked proteins can be treated as the unfolding of

a single protein with an average effective pulling spring

constant. The fitted apparent rate constant k~0 should then be

roughly between one and eight times higher than the intrinsic

rate constant of a single titin, k0, if the pulling coordinate

were an adequate reaction coordinate.

We first need to determine the effective spring constant ks
of the linker and AFM system. As pointed out above, and

shown in Appendix B, ks is softer than the spring constant

of the AFM spring alone. We obtain the effective spring

constant ks from the average of the slopes of the pull-

ing force-extension curves before rupture. From Fig. 2 B of

Carrion-Vazquez et al. (1999), we estimate an effective

spring constant of kBTks ¼ 10 pN/nm, used here at all pull-

ing velocities. The remaining unknown parameters are the

molecular spring constant, km, the position of the transition

state, xz, and the apparent rate of titin unfolding, k~0. Fitting
of the phenomenological result, Eq. 7, to the force-versus-

velocity data extracted from Fig. 3 of Carrion-Vazquez et al.

(1999) results in xz ¼ 0.18 nm, and k~0 ¼ 1:53 10�2 s�1.

This rate is larger than the rate of 5 3 10�4 s�1 from

chemical-denaturation experiments (Carrion-Vazquez et al.,

1999) even after the maximum correction for the number of

modules is made.

Fitting of the analytic approximation to the microscopic

theory, Eq. 21, optimized by Eq. 19, gives kBTkm ¼ 900

pN/nm, k~0 ¼ 10�4 s�1, and xz¼ 0.42 nm, with km, ln k~0, and
the height of the free energy barrier to rupture, DGz ¼
kBTkm(x

z)2/2, used as fitting parameters. These parameters

reproduce not only the experimental data (Carrion-Vazquez

et al., 1999) for the average force as a function of pulling

speed (Fig. 5), but also the shape of the force distribution not

used in the fit (Fig. 6).

Scaling by the number of titin modules gives an intrin-

sic rate of k0 between 10�5 and 10�4 s�1. This range of

corrected rates is below the experimental rate constant of 53

10�4 s�1. However, since we are trying to determine three

parameters from the limited data in Fig. 5, it is to be expected

that there are strong correlations between the fitted

parameters. If we fix k~0 at 8 3 5 3 10�4 s�1, we obtain

a reasonable fit to the average forces. Thus, all we can

conclude from the data used so far is that the experimental

pulling data are roughly consistent with the chemical rate

constant.

To extract a more accurate k0 from pulling measurements

one should use not only the mean but the whole distribution

of rupture forces (or at least the variance) at each unfolding

step as a function of pulling velocity. This entire data set

should be fitted globally using our analytic expression Eq. 18

with k0 replaced by (N � i 1 1)k0 for the i-th unfolding

event. This procedure should yield an accurate estimate of

k0 which can then be compared with the result from chemi-

cal denaturation. Agreement within experimental error is a

necessary but not sufficient condition for the pulling co-

ordinate to be a good reaction coordinate for unfolding.

To show the need to use more information about the

probability distribution of rupture forces than just the mean,

we analyze the x2 contour surfaces of the fit. Fig. 7 reveals

FIGURE 5 Average force at unfolding as a function of pulling velocity for

an I27 titin construct. Filled circles with error bars show experimental data

from Fig. 3 of Carrion-Vazquez et al. (1999). Open squares show results

from Brownian dynamics simulations, with statistical errors smaller than the

symbol size. The solid line is the result of the microscopic theory obtained

by integrating the approximate survival time distribution, Eq. 19. The long-

dashed line shows the mean force calculated from the analytic approxima-

tion, Eq. 21. The short-dashed line is the phenomenological result for the

average force at rupture, Eq. 7. The vertical arrow indicates a pulling speed

of k0x
z where the average force at rupture is approximately zero.

FIGURE 6 Distribution of forces at rupture (x ¼ xz) for an I27 titin

construct for a pulling velocity of 0.6 mm s�1. Experimental data extracted

from Fig. 2 C of Carrion-Vazquez et al. (1999) are shown as blocks. The

thick solid line is the analytic expression given in Eq. 17.
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strong correlations between the fitting parameters, and large

uncertainties in the fit. Similar conclusions were reached

from fitting of the phenomenological theory to unfolding

data for titin I27 mutants (Best et al., 2002; Carrion-Vazquez

et al., 1999). In Fig. 7, xF
2 is defined as +i½FobsðviÞ�

FmodelðviÞ�2=s2
F where Fobs and Fmodel are the measured and

calculated average forces. If we assume uniform statistical

errors of sF ¼ 10 pN in the measured forces (;5% relative

error), we find that rates as small as k~0 ¼ 10�7 s�1 and as

large as 10�1 s�1 are consistent with a root-mean-square

deviation of 1.2 times the assumed error of 10 pN. The range

of parameter values consistent with the pulling data greatly

shrinks if we also use measured standard deviations in the

forces, extracted from the error bars in Fig. 3 of Carrion-

Vazquez et al. (1999). We define x2
s ¼ +i½sobsðviÞ�

smodelðviÞ�2=s2
s, where sobs and smodel are the measured

and calculated standard deviations. If we assume statistical

errors of the standard deviations of ss ¼ 3 pN (;10%

relative error), we find a small range of parameters consistent

with root-mean-square deviations below 1.2 times the

assumed errors simultaneously for both means and vari-

ances. With that tolerance, we estimate 10�5 s�1#

k~0 # 10�3 s�1, 12 kcal mol�1 # DGz # 16 kcal mol�1,

and 800 pN nm�1 # kBTkm # 2200 pN nm�1, correspond-

ing to 0.3 nm # xz # 0.5 nm. We emphasize that these

parameter ranges are based on assumed statistical errors and

provide only gross estimates of the uncertainties. We believe

that if experimental distributions of rupture forces were to be

analyzed separately for each unfolding event, as proposed

above, these uncertainties would be substantially reduced.

With the fitted values of kBTkm ¼ 900 pN nm�1,

k~0 ¼ 10�4 s�1, and xz ¼ 0.42 nm, we perform Brownian

dynamics simulations of the model in Eqs. 8 and 9. Fig. 5

compares the average force at rupture from experiment

(Carrion-Vazquez et al., 1999) and simulation with the

phenomenological result, Eq. 7, the full microscopic theory,

Eq. 19, and the analytical approximation to the microscopic

theory, Eq. 21. The simple harmonic model of force-driven

unfolding, Eqs. 8 and 9, is sufficient to reproduce the ex-

perimentally measured average forces at unfolding. Both the

full microscopic theory, Eq. 19, and its analytic approxima-

tion, Eq. 21, are in agreement with the experimental and

simulation data for the average forces for pulling velocities

between 0.01 and 100 mm s�1. The phenomenological result,

Eq. 7, with the parameters of the microscopic model, is seen

to be unsatisfactory. Of course, since the available data are

almost linear with ln v, one could force fit the data with Eq. 7
but then the resulting parameters would not be meaningful.

The estimated free energy barrier to unfolding of about

DGz ¼ 12–16 kcal/mol seems not unreasonable for proteins

of ;100 amino acids. The measured stability of the I27 titin

module is DG ¼ 7.56 0.3 kcal/mol (Carrion-Vazquez et al.,

1999). Within a two-state approximation, we can thus

estimate a free energy barrier to folding as DGf
z ¼ DGz �

DG of 4–9 kcal/mol. These bounds should tighten

considerably when more extensive data are reanalyzed with-

out averaging over all rupture events, as discussed above. It

would be of great interest to compare the resulting free

energy of activation with that found from the entire free-

energy surface, as determined from pulling experiments

using our procedure (Hummer and Szabo, 2001) based on a

generalization of Jarzynski’s theorem (Jarzynski, 1997).

Finally, it is interesting that the above range for the height

of the free energy barrier to folding is consistent with that

recently determined from single-molecule fluorescence mea-

surements on a slightly smaller protein (Schuler et al., 2002).

At the highest pulling speeds (vJ 1 mm s�1), the experi-

mental rupture forces of (Carrion-Vazquez et al., 1999) show

an upturn that indicates a transition to the deterministic limit

(Fig. 5). However, additional data at even faster speeds would

be needed to test the power-law dependence. In another class

of experiments, Evans et al. (2001) mechanically probed

FIGURE 7 Fit of the microscopic theory Eq. 19 to

experimental titin pulling data (Carrion-Vazquez et al.,

1999). Shown are contour surfaces of x2 defined as the

maximum of independently calculated xF
2 and xs

2 for the

mean and the standard deviation of the forces, respectively.

To determine the maximum range of parameters consistent

with a given x2, the minimum x2 is shown in projection

onto planes of parameters DGz, km, and apparent rate k~0.
The vertical shaded area indicates the range of rates k~0
consistent with the chemical-denaturation experiments

(Carrion-Vazquez et al., 1999), with the upper and lower

limit given by the uncorrected rate, and the rate multiplied

by N¼ 8 to account for the multimodule structure. The thin

vertical solid line gives the k~0 value from a fit of the mean

forces using the phenomenological approach. The shaded

area in the contour plots outlines the parameter range in

which x2 \ 10 simultaneously for average forces and

standard deviations, corresponding to a mean-square

deviation of less than ;1.5 times the expected variance.

The thick solid line shows the corresponding contour line if

only average forces are used.
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carbohydrate-selectin bonds. These investigators varied the

force-loading rate ksv over four orders of magnitude, and

identified two regimes for the dependence of the rupture

forces on the loading rate. Interestingly, if the force-versus-

loading rate data extracted from Fig. 3 A of Evans et al.

(2001) are plotted double-logarithmically, the second regime

shows a power-law dependence with exponent 1/2, as pre-

dicted here. Although this would explain the transition to

larger rupture forces without invoking a second transition

state (Evans et al., 2001; Merkel et al., 1999), a more detailed

analysis will be needed to address this question conclusively.

Such an analysis should include the possibility that at high

pulling velocities motions along coordinates other than the

pulling direction may dominate rupture.

CONCLUSIONS

We have developed and tested a new procedure to extract

the kinetics of rare molecular events from force-induced

mechanical transitions in single molecules, as measured by

AFMs, laser tweezers, etc. Our procedure is based on an

accurate analytic theory of a simple microscopic model of

rupture that includes stochastic fluctuations in the force. It

was shown to reproduce the results of simulations with-

out using adjustable parameters. This model predicts that

the average force at rupture is a nonlinear function of the

logarithm of the pulling velocity. Thus, the experimentally

observed upturn in the force-velocity curves at high pulling

speeds does not necessarily imply the existence of multiple

barriers (Evans et al., 2001; Merkel et al., 1999).

A limiting case of our formalism is the phenomenological

description of rupture (Evans and Ritchie, 1997; Evans et al.,

1991; Rief et al., 1997, 1998) that is based on an extension of

Bell’s approximate expression for the rate constant (Bell,

1978) to an explicitly time-dependent force. By comparing

its predictions to the results obtained from our microscopic

model, we found that if no adjustable parameters are used,

the phenomenological formalism works only for pulling

velocities well below the experimentally relevant regime.

It is appropriate to summarize here our optimum pro-

cedure to analyze pulling experiments using our analytic

results. Our formalism involves three adjustable parameters:

1), the intrinsic rate constant (k0) in the absence of external

forces; 2), the position of the transition state (xz); and 3), the
height of the free energy barrier (DGz) or, equivalently, the

molecular spring constant (km) that describes the curvature

of the free energy surface of the intact state (before rupture)

along the pulling coordinate. The remaining parameter is the

effective spring constant (ks). It is smaller than the spring

constant of the pulling apparatus alone because of softening

due to the presence of linker molecules. ks is determined for

each pulling velocity by averaging the slope of the force

extension curves just before rupture. The three adjustable

parameters are then globally determined by fitting the

cumulative distributions of rupture forces for all velocities

using the analytic expression given in Eq. 18. Estimates for

these parameters can be obtained by first fitting the average

forces vs. velocity using Eq. 21. If the system consists of N
independent units, as for example titin, the above procedure

is applied separately to the i-th (i ¼ 1, . . . , N ) rupture event

with k0 ! ðN � i1 1Þk0.
Because we used only the published data for the mechani-

cal unfolding of an eight-module titin construct (Carrion-

Vazquez et al., 1999), we could not illustrate our procedure

fully. Specifically, we averaged the data over all rupture

events at a given velocity and used our formalism to extract

a wide range of apparent intrinsic rate constants k~0 for un-

folding that are consistent with AFM pulling experiments.

This preliminary analysis showed that the experimental

unfolding rate from chemical denaturation (Carrion-Vazquez

et al., 1999) falls just above the range of rates we extracted

from the pulling experiments, suggesting that for titin the

pulling coordinate may indeed be a reasonable reaction coor-

dinate. The question whether the extrapolated and bulk rates

are the same, however, is still open and its resolution requires

a global fit to the force distribution data. If the pulling co-

ordinate turns out not to be an adequate reaction coordinate,

our procedure can still be used to estimate the free energy

barrier DGz along the pulling coordinate, which can be com-

pared with that obtained from molecular dynamics simu-

lations (Balsera et al., 1997; Isralewitz et al., 2001; Lu and

Schulten, 1999).

Assessing the adequacy of the simple potential underlying

our microscopic model of force-induced rupture is important.

This can be accomplished, for instance, by determining the

free energy profile along the pulling coordinate (Hummer

and Szabo, 2001), or by detailed molecular dynamics

simulations (Marszalek et al., 1999). For I27 titin, both mo-

lecular dynamics simulations and a small hump in mea-

sured force extension curves suggest that force-induced

unfolding proceeds in two stages (Marszalek et al., 1999).

Recent experiments (Fowler et al., 2002) provide further

evidence for an unfolding intermediate in pulling of I27. The

intrinsic unfolding rate of a mutant protein mimicking the

intermediate was measured as 6.93 10�3 s�1 (Fowler et al.,

2002), ;10 times faster than I27 wildtype. Multiple inter-

mediates were suggested to occur in force-induced unfold-

ing of fibronectin III (Gao et al., 2002). If rupturing occurs

through a sequence of well-resolved intermediates, our for-

malism could be applied separately to estimate rates, free

energy barriers, and transition-state locations for each of the

sequential events.

APPENDIX A: PHENOMENOLOGICAL
FORMALISM FOR MULTIPLE COVALENTLY
LINKED UNITS

The protein titin consists of multiple independently folded modules

covalently connected by short linker peptides. In pulling experiments on

natural and synthetic titin constructs, the titin units are sequentially unfolded

Kinetics from Single-Molecule Pulling 13
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by mechanical force (Kellermayer et al., 1997; Marszalek et al., 1999; Rief

et al., 1997; Tskhovrebova et al., 1997). As the mechanical tension

increases, individual titin molecules unfold. With every new unfolding

event, the effective linker length grows, transiently releasing tension on

the remaining folded proteins. If we assume that unfolding events of

sequentially arranged molecules are uncorrelated and irreversible, then we

can formulate the phenomenological approach in terms of the first-order

kinetics scheme:

0�!k1ðtÞ 1�!k2ðtÞ 2 . . .�!kNðtÞ N: (A1)

State j contains j unfolded modules out of a total of N modules. A similar,

reversible kinetic scheme was considered by Evans (2001). Starting from the

all-folded state, P0(0) ¼ 1, the relative population of states with a given

number of unfolded modules satisfy _PP0ðtÞ ¼ �k1ðtÞP0ðtÞ, _PPjðtÞ ¼ kjðtÞ
Pj�1ðtÞ � kj11ðtÞPjðtÞ for 1 # j \ N, and _PPNðtÞ ¼ kNðtÞPN�1ðtÞ, in

analogy to Eq. 2. These kinetic equations can be solved recursively by

quadrature,

P0ðtÞ ¼ f1ðtÞ (A2a)

PjðtÞ ¼ fj11ðtÞ
ð t

0

kjðt9ÞPj�1ðt9Þdt9
fj11ðt9Þ

for 1 # j\N (A2b)

PNðtÞ ¼
ð t

0

kNðt9ÞPN�1ðt9Þdt9; (A2c)

where fjðtÞ ¼ exp½�
R t

0
kjðt9Þdt9�. For N ¼ 1, this reduces to the previous

theory, Eq. 3, with S(t) ¼ P0(t). The probability distribution that the j-th
unfolding event occurs at time tj* is p(tj*) ¼ kj(tj*)Pj�1(tj*). On average, the

j-th unfolding event then occurs at t�j ¼
R ‘

0
tkjðtÞPj�1ðtÞdt.

Within the phenomenological model, the rates kj11(t) can be determined in

analogy to Eq. 1, but accelerated by the number N� j of still folded proteins
(Makarov et al., 2001; Zhang et al., 1999):

kj11ðtÞ ¼ ðN � jÞk0 exp½bxzFjðtÞ�: (A3)

The time-dependent force, Fj(t), explicitly depends on the number j of

modules already unfolded. This is because after each unfolding event, the

linker becomes longer and the effective spring constant softens, as discussed

in Appendix B. We can use jL as the contour length of a wormlike-chain

model of an anharmonic linker with j unfolded titin modules, Fj(t) ¼
FWLC(vt; jL), where FWLC is given in Eq. C2. Then, Eqs. A2 and A3 provide

the analytic solutions to the kinetic simulations of Rief et al. (1998) for the

unfolding of titin in the irreversible limit.

APPENDIX B: FLEXIBLE LINKERS

In the simplest model with a linker, the system is described by xm and xl, the
molecular and linker coordinates, respectively, with a free-energy surface

V(xm,xl,t) ¼ V0(xm) 1 Vl(xl � xm) 1 ks(vt � xl)
2/2. In general, the higher

dimensionality of the potential surface considerably complicates the analysis.

However, when the dynamics of the linker coordinate is sufficiently fast, the

problem becomes effectively one dimensional. Specifically, the dynamics of

the molecular coordinate xm is then governed by the potential of mean force

Ve(xm, t) defined by:

e
�bVeðxm;tÞ ¼

ð‘

�‘

e
�bVðxm;xl;tÞdxl: (B1)

The simplest case is when the linker potential is also harmonic, i.e., bVl(xl
� xm) ¼ kl(xl � xm)

2/2 and the above integral can be evaluated

analytically. Within an additive constant, the potential of mean force is

then given by

bVeðxm; tÞ ¼
km

2
x2m 1

ke

2
ðxm � vtÞ2; (B2)

which is equivalent to the case without a linker, but with a softened effective

pulling spring constant ke ¼ (ks
�1 1 kl

�1)�1 replacing ks. To estimate the

effective spring constant ke from a pulling experiment, we calculate

the average pulling force as a function of time, bFðtÞ ¼ ks½vt � �xxlðtÞ�. If we
assume equilibrium in the linker coordinate and a ‘‘hard’’ molecular

coordinate [km � ke ¼ (ks
�1 1 kl

�1)�1], then �xxlðtÞ � vtks=ðks1klÞ and the

force versus extension x ¼ vt curves of individual pulling traces

fluctuate about

bFðxÞ � kex: (B3)

Thus, one can estimate ke from the slope of the average force-extension

curve before rupture, as illustrated in Fig. 1 C. For slow to intermediate

pulling speeds, one can therefore reduce the problem of a harmonic, rapidly

relaxing linker to the linker-free case.

APPENDIX C: MULTIMODULE TITIN MODEL
WITH WORMLIKE-CHAIN LINKERS

To mimic unfolding of multimodule titin constructs, we simulate a more

realistic anharmonic model and compare the results to the microscopic

theory, Eq. 21. In this titin model with N independently unfolding modules,

each unit i is described by two coordinates: ri(t) is its center of mass and xi(t)
its end-to-end extension. For the intramolecular coordinate xi(t), we define

two regimes: for xi(t)\ xz, xi(t) moves on a harmonic potential describing

the folded well; once xi(t) reaches x
z, the i-th module irreversibly ruptures,

and xi(t) moves in the unfolded well described by the approximate wormlike-

chain potential (Marko and Siggia, 1995):

bVWLCðxÞ ¼
x
2ð3L� 2xÞ
4lpLðL� xÞ (C1)

with a restoring force:

�lpbFWLCðx; LÞ ¼
1

4
1� x

L


 ��2

� 1

4
1

x

L
; (C2)

where x is the extension, lp is the persistence length, and L is the contour

length.

Motion occurs only in one dimension, with the N- and C-terminal ends of the

i-th titin unit at ri(t) � xi(t)/2 and ri(t) 1 xi(t)/2, respectively. The C and N

termini of adjacent monomers i and i 1 1 are held together by harmonic

linkers with a spring constant kBTkl ¼ 1000 pN/nm. The molecule is

harmonically anchored at the N-terminus of the first module, also with

a spring constant kBTkl. Finally, the whole construct is connected to a pulling

spring with spring constant kBTk0 ¼ 50 pN/nm through a wormlike-chain

linker. For simplicity, we assume the same contour length L ¼ 28 nm and

persistence length p ¼ 0.4 nm for both this linker and the unfolded protein

units (Carrion-Vazquez et al., 1999). The tip of the pulling spring is located

at rN11(t), and the force at time t is bF(t) ¼ k0[vt � rN11(t)]. The potential

surface of the whole system is then given by

bV ¼ kl

2
r1 �

x1
2


 �2

1 +
N�1

i¼1

ri11 � ri �
xi11 1 xi

2

� �2
( )

1 +
N�1

i¼1

si

kmx
2

i

2
1 ð1� siÞVWLCðxiÞ

� �

1VWLC rN11 � rN �
xN
2


 �
1

k0

2
ðvt � rN11Þ2:

(C3)
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si is one initially; once xi has crossed x
z, si is irreversibly changed to zero. A

schematic representation of the system is shown in Fig. 3. For the dynamics,

we assume diffusion on this potential surface with diffusion coefficients Dm

for the end-to-end distances xi in the folded well, xi \ xz; after unfolding
resulted in a transition to wormlike chain behavior, the diffusion coefficients

irreversibly change to Dm
‘ ¼ 10 nm2 ms�1. The diffusion coefficients of the

center-of-mass coordinates ri and the AFM tip rN11 are DCM ¼ 100 nm2

ms�1 and Dtip ¼ 50 nm2 ms�1. For the remaining parameters we use

kBTkm ¼ 1320 pN/nm, xz ¼ 0.335 nm, and k0 ¼ 5.4 3 10�4 s�1,

corresponding to Dm ¼ 0.04656 nm2 ms�1.

We thank Dr. Jim Hofrichter for insightful discussions.
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