

Education:

Xingjiang ZHOU (周興江)

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Tel: 86-10-82648176 E-mail: XJZhou@iphy.ac.cn Website: http://laser-arpes.iphy.ac.cn

1983-1988: B. Sc., Dept. of Chemistry & Chemical Engineering, Tsinghua University, Beijing
1988-1990: M. Sc., Dept. of Materials Science & Engineering, Tsinghua University, Beijing
1991-1994: Ph. D, Institute of Physics, Chinese Academy of Sciences, Beijing

Professional Employment:

2004 –	Professor, National Lab for Superconductivity, Institute of Physics, Chinese
present:	Academy of Sciences, Beijing 100190, China.
	Physicist & Beamline Scientist, Dept. of Applied Physics and Stanford Synchrotron
1997 – 2006:	Radiation Laboratory, Stanford University, Stanford, CA94305 & Advanced Light
	Source, Lawrence Berkeley National Lab, Berkeley, CA94720.
	Humboldt Research Fellow, Max-Planck-Institute for Solid State Research,
1995 – 1997:	Heisenbergstrasse 1, D-70569, Stuttgart, Germany

Research interests:

Electronic structure of unconventional superconductors and other quantum materials: high-temperature cuprate superconductors, iron-based superconductors, low-dimensional and nanoscale materials, topological insulators and topological superconductors.

Selected Publications:

- Orbital Origin of Extremely Anisotropic Superconducting Gap in Nematic Phase of FeSe Superconductor Defa Liu, Cong Li, Jianwei Huang, X. J. Zhou et al., Physical Review X 8, 031033(2018).
- Electronic Evidence of Temperature-Induced Lifshitz Transition and Topological Nature in ZrTe₅ Yan Zhang, Chenlu Wang, Guodong Liu, X. J. Zhou et al., Nature Communications 8, 15512 (2017)
- Quantitative Determination of the Pairing Interactions for High Temperature Superconductivity in Cuprates Jin Mo Bok, Han-Yong Choi, Chandra M. Varma, X. J. Zhou et al.,

Science Advances **2**, e1501329 (2016)

- 4. Common Electronic Origin of Superconductivity in (Li,Fe)OHFeSe Bulk Superconductor and Single-Layer FeSe/SrTiO₃ Films
 Lin Zhao, Aiji Liang, Dongna Yuan, X. J. Zhou et al.,
 Nature Communications 7, 10608 (2016)
- 5. Direct Evidence of Interaction-Induced Dirac Cones in Monolayer Silicene/Ag(111) System
 Ya Feng, Defa Liu, Baojie Feng, X. J. Zhou et al., PNAS 133, 14656(2016)

Laser ARPES on High Temperature Superconductors and Topological Materials

Xingjiang ZHOU Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Email: XJZhou@iphy.ac.cn

Abstract. We have studied electronic structure of high temperature superconductors and other quantum materials by high resolution laser-based angle-resolved photoemission spectroscopy (ARPES). In this talk, I will first introduce our latest progress in developing vacuum ultra-violet laser-based angle-resolved photoemission systems [1]. Then I will report our recent results on studying high temperature superconductors and topological materials including: (1). Distinct electronic structure and superconducting gap in single-layer FeSe/SrTiO₃ films [2,3], (Li,Fe)OHFeSe [4] and bulk FeSe superconductors [5]; (2). Quantitative determination of pairing interactions in high-Tc cuprate superconductors [6]; and (3). Electronic structure of topological materials including Bi₂Se₃ [7], silicence [8], WTe₂[9] and ZrTe₅[10].

- 1. X. J. Zhou et al., Reports on Progress in Physics 81, 062101 (2018);
- 2. Defa Liu et al., Nature Communications 3, 931 (2012);
- 3. Shaolong He et al., Nature Materials 12, 605 (2013);
- 4. Lin Zhao et al., Nature Communications 7, 10608 (2016);
- 5. Defa Liu et al., Physical Review X 8, 031033 (2018);
- 6. Jinmo Bok et al., Science Advances 2, e1501329 (2016);
- 7. Zhuojin Xie et al., Nature Communications 5, 3382 (2014);
- 8. Ya Feng et al., PNAS 133, 14656(2016)
- 9. Chenlu Wang et al., Phys. Rev. B 94, 241119(R) (2016)
- 10. Yan Zhang et al., Nature Communications 8, 15512 (2017).