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 709

 Atmospheric Diffusion shown on a Distance-Neighbour Graph.

 By LEWIS F. RICHARDSON.

 (Communicated by Sir Gilbert Walker, F.R.S.-IReceived Novemnber 7, 1925.)

 ? 1. TH:E NEED POP A NEW METaOD.

 ? 1.1. Introduction.

 If the diffusivity K of a substance whose mass per volame of atmosphere is

 X be defmed by an equation of Fick's type

 iX 8X +,i +x -, LZ + at_a (a/) -(K -Lyh k K +l K^) 1
 ax ay &.1 at aS xJ y az a

 x, y, z, t being Cartesian co-ordinates and time , U, '~, iv being the components of
 mean velocity, then the measured values* of K have been found to be 0-2

 cM.2 sec.- in capillary tubes (Kaye and Laby's Tables), 105 cm.2 sec.-l when

 gusts are smoothed out of the mean wind (Akerblom, G. I. Taylor, Hesselberg,
 etc.), 108 cm.2 sec.- when the means extend over a time comparable with

 4 hours (L. F. Richardson and ID. Proctor), 1011 cm.2 sec. when the mean wind

 is taken to be the general circulation characteristic of the latitude (Defant).

 Thus the so-called constant K varies in a ratio of 2 to a billion. The present

 paper records an attempt to comprehend all this range of diffusivity in one

 coherent scheme.

 Lest the method which I shall adopt should strike the reader as queer andl

 roundaboti, I wish to justify it by showing first why some known method,&

 are in difficulties.

 ?1.2. Does the Wind possess a Velocity?

 This question, at first sight foolish, improves on acquaintance. A velocity
 is defined, for example, in Lamb's 'Dynamics' to this effect: Let Ax be the

 distance in the x direction passed over in a timle At, then -the x-component of

 velocity is the limit of Ax At as At -+- 0. But for an air particle it is not obvious

 that Ax/At attains a limit as At ->0.

 We may really bave to describe the position x of an air particle by somethi ig

 rather lile Weierstrass's function, of which F. Klein gives an entertaining
 description (' Anwendung der Differential und Integralrechnung auf Geometric,'
 Leipzig, B. G. Teabuer, 1902), say,

 k = Jct -A- E (D-") cos (5o),

 * For references to publications, see the table in ? 5.2.
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 710 L. F. RRichardson.

 where / is independent of t and i is a positive integer. This gives a definite

 position x to the air particle, because the series of co-efficients 1 + * ? W' +
 A- -4., . converges, and makes x a continuous function of t; but it gives no

 limit to AxIAt, becatuse, as th-e series proceeds, the elementary waves, while
 becoming shorter, become also steeper. It is not suggested that these particular

 periods and amplitudes, wNhich Klein chose for illustration, have anything to

 do with the wind.

 A general and beautiful theory of " Diffusion by Continuous AMovements"

 has been given by G. I. Taylor.* It is expressed in terms of velocity.

 Althoug h this theory of Taylor's is available, yet I thinlk it will be a useful
 adventure to try now to make a theorj of difusion without assuming that

 Ax/At has a limit.

 ? 1.3. The Lagrangian Secification adopted. Notation for Means. Time
 Rate of a Mean.

 In view of the foregoing considerations, let us n-ot think of velocity, but only

 of vanous hyphenated velocities, such as the one-minute- velocity, or the six-

 hours-velocity, the words attached by the hyphen indicating the value of At.
 The position of a particle is, however) a conitinuous function of time. The

 Lagrangian specification of fluid motion is applicable. A particle at the

 point (a, b, c) at time zero, is at (x, y, z) at time t.

 Following Taylor, a square bracket [ ] will be used to denote a mean value,
 so that [A] is the mean of any quantity A. The portion of space-time over

 which t,he mean is taken will be specified as occasion arises.

 Even if (x - a) has no derivative with respect to t, yet [(x - a)] may have

 suich a derivative. For instance, this happens with the Weierstrassian function
 mentioned above, if the mean is taken over a time. Let us assume that

 [(x - a)] has a derivative when taken over either a space or a time; for there

 is 3io evitdence to the contr'ary.

 ? 1.4. A Search for Natural Mean Values.

 ? t st sight a good way of specifying diffusion would be to take the dis-
 placements x - a, y - b, z - c of an air particle, and to form mneaizs of their

 powers and products such as [x - a], [(x - a)2], [(x - a) (y - b)], and the like.
 But; observation shows that the numerical values would depend entirely

 upon l1ow large a volume was included in the mean. To see this, imagine that

 'Proc. Lond. Math. Soc.,' Ser. 2, vol 20, Part 3 (1920).
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 Atmospheric Diffusion on a Distance-Neighbour Graph. 711

 we could introduce just two molecules of acetylene and trace their wanderings.
 If initially they are i0-1 cm. apart it seems likely, judging by what is known

 about molecular diffusion and by what one sees of the motion of smoke, that
 after travelling for one second they would still be within 10 cm. of one another.

 If, however, the two molecules are iniitially 10+5 cm. apart they may be caught
 in two gusts mn-oving in rather different azimuths, so that after one second their

 separation: may have altered by several metres.

 Thus it appears that if y is a co-ordinate directed horizontally at right angles
 to the mean-wind so that [(y - b)] _ 0, then the value obtained after a fixed

 time for (y - b)2] wo-uld inerease with the range of distance normnal to the wind
 over which the mean was taken.

 Is there any type of mean that forms a natural standard? We might try-
 (i) A mean. over a volumne so large that its exact size did not matter, a limit

 to [(y - b)2] being attained. This will not do, because Defant's researches show

 that no limit is attained within the volume of the atmosphere.

 (ii) A mean taken over a definite set of molecules. Suppose that we were to

 let loose a sphere 0 01 cm. in diameter of acetylene, which has much the same

 density as air. The sp'here contains about 1013 molecules. For the first few
 hundredths of a second its rate of diffusion will be the molecular one K 0 * 2;

 then micro-turbulence will spread it less slowly; then, after a few seconds, part

 may get caught in one of the gusts such as are shown by a pressure-tube
 anemometer, while anoth.er part may remain in a lull, so that it is torn asunder

 and gusts scatter it, K being 104. Next squalls of several minutes' duration.
 separate it more rapidly. Its rate of diffusion is now measured by K - 108.

 Then one part gets into a cyclone and another remains behind in an anti-
 cyclone, and its rate of diff-usion is measured by Defant's value K-1011
 Finally, it is fairly uniformly spread throughout the earth's atmosphere at the

 rate of about one molecule of acetylene for every cube of surface air 70 metres
 in the edge.

 This diffusing dot is in a sense a natural standlard. In the theory of the

 diffusion of heat (see, for examnple, E. W. Hobson,' Encyk. AMath. Wiss.,' rvol. 4,

 p. 187) something rather like this is found to be useful. A small dot of heat is
 imagined to spread out as time proceeds into an unbounded medium. This
 distribution of heat in space-time is talcen as an element, like the point-charge in

 electrostatics, from which more complicated distributions can be built up.
 Can we do lilewise for diffusion in the atmosphere ? Imagine at an instanit a
 gradient of concentration of acetylene in the atmosphere over an area measuring

 100 km. x 100 km. Let each cube of 10-2 cm. edge begin separately to spread

 VOL. CX.-A. 3 c
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 712 L. F. Richardson.

 vut in the mannier described above, a d let us superpose the separate spreadings

 in the hope of finding the flux of inass down the gradient of conent ration.
 To do this we woulId naturally consider the chaDge in a short time At of, say,
 1/100 second. But in this short ti.yie each dot spreads with m-olecular diffusi-

 vity 0'2 cm.2 see.1. So any results deduced from the superposition of the

 effects of the dots will correspond to molecular dif?usiv'ity and will ignore the

 effects of eddies. This picture is false to Nature. So we nmust conelude that

 in the atrmosphtere a spreadingq dot will not serve as a element from whtch general

 distributions canz be built up.

 ? 2. P TYPE OF MEAN WuICIT AVOIDS THE IOREGOING DIFFICULTIES AND

 WHICH MIGTiT VITH ADVANTAGE BE OBSERVED.

 The fundamuental idea of this paper is that the rate of diffLusion increases with

 the distane apart. To state this carefully Iet us revert to the two molecules of

 acetylene, let loose at t 0 at the points (a,, bD c,), (a2, b2 C2). At time t
 let their positions be (x1,, zj), (x2, Y21 Z2). The x component of their separation
 is initially, a2 - a1 and becoimes 2 -- x1 at tLhue t. NTow let the release of a
 pair of particles at -the same points be repeated m'any tinmes in succession, a.nd

 let [ ] denote a mean taken over these successive pairs. Consider the
 nmean square, of the deviationi of (X1 -- X2) from ts mnean alt tinie t, that is,

 [R x2 -[ -X2])] [i] saye

 Suppose, for example, that [x1- x2] is a kilom etre. Then gusts, which may be
 seen on a lake or on a cornfield as pate-hes of rJf fld surface a fraction o a kilo-

 metre loDg, would afect individual members of the pair 1, X2 separately and so

 would tend to increase [j]. We should get the average effect of such gusts if we

 prolonged the tim'e of averaging indefinitely. The time of averaging must not
 be confused with t, tlhe time of flight. It, is an advantage to have a pair of
 marked molecules. For if instead we considered molecules released one at a

 time, then their mean square deviation from their mean. position a-t t, namely,

 [(- [x])2], would depend on larger and larger eddies as the time included in the
 average [ ] was increased, so that no limit to the average would be attained
 until cyclonic chaniges were included. But when molecules are released in pairs

 this is not so. For if a cyclone passes over the district so that the wind changes
 its directior through one or two right angles, these changes will occur nearly

 zimultaneously at -t;he two stations one kilometre apart, so that they will not

 have much efTect on individual values of (X1 - X2) nor on FjI. We have at last

 found in [j] a mean wvhich at-tains a limit, as the timec of averaging is prolonged
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 Atmospheric Dsifftsion on a Distance-Neigqhbour Graph. 713

 indefinitely, and yet only brings in the effects of eddies comparable in diameter

 with [xI - x2 or less.
 Direct observations of [j] have not been made so far as I know, but there is a

 mass of published evidence about turbulence which stronigly suggests that

 [ji/t is independent of t, if t is neither too small nor too large, and that [j]/t
 increases with the distance between the starting points.

 ? 3. A STATISTIC FOR CLUSTERS.

 ? 3.1. Introduction.

 The failure of the dispersal of a point-charge to serve as a mnathe-

 natical element, from which the dispersal of an extended system may be built

 up, appears to be intimately connected with the fact that in the atmnosphere

 the dispersal goes on in patches. That is to say, a small dense cluster of marked

 molecules, represented by the dot in fig. 1 which, by molecular diffusion alone,

 would spread through the successive spherical clusters shown in figs. 2 and 3,

 actually seldom passes through the large spherical stage 3, because it is first

 sheared into two detached clusters as suggested in fig. 4. These are carried.

 far from one another, and are likely to be again torn into smaller pieces as in

 fig. 5. Meanwhile each of the torn parts is gradually spreading by molecular
 diffusion. These diagrams are, of course, merely illustrative fictions.

 1 3 ...

 2..

 4

 ics. _-.
 3 c 2
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 714 L. F. Richardsoni.

 As a preliminary to describing the succession of changes, we must find out

 how to describe the distribution at a single instant. The problem is rather like

 that of finding some simple specification of the extent to wllich the population

 is divided between cities, towns, villages and isolated houses, without making a

 map; for in the atmosphere a map of all the eddies would be too bewilderingly

 complicated. WTe want something that gives us a general measure of the

 spread of the molecules, thus serving the puirpose of the standard deviation of

 the whole aggregate of marked molecules from its mean, and yet at the same

 time informs us about the internal details of the clusster. Both purposes will

 be served, as will be shown, by the following method, which is not intended as a
 practical observation, but as a mathematical specificationi.

 ? 3.2. Defition of the Statistic Q, the Mean Number of Neighbottrs per Length.

 The air is supposed to contain a large niumber of "muarked molecules."

 They might, foi example, be acetylene. For simplicity, let us confine attenltion

 to distribution of points on' a stralight ine. Take any mnarked molecule,

 which for reference we will call A. With A as origin, divide the line by

 sections at positive and negative integral m-ultiples of a unit h, thus forming

 "4 cells " each of length h. Count the nuimber of m-arked molecules in each

 of these cells. When a molecule is exactly on the partitioni between a pair

 of cells, half of it is attributed to each cell. Let h. AX, +] denote the

 :number in. the cell bet;ween I= nh and I = (n + 1) h where I is the distance

 fron A measured in the positive sense, and n is an integer. Let there be N

 marled molecules altogether. A m molecule might conceivably be considered

 to be] its own neighbour at zero distance, buA we do not make this convention,

 and therefore the sum of the numbers in the cells is N - 1. Next repeat the

 performance with the origin at each onie of the other markIed molecules B,
 C, I), in turn. Then formi the mean

 Q -+ I (An n-1-1 + Bit, n}-1 + (a. + etc., to N terms).

 In this way we obtain a set of quantities Qo h, Qh. 21i, Q2h, 355.,) which are
 numbers of marked molecules per length, classified accordin g to their distances

 I from other molecules; these dista,nces lying in the ranges 0 to t, A to 2A,
 2k to 3h, and so on. Next, it will be well to draw a diagram in which the

 ordinate is Q f for the range of absciss extending from I nith to
 I - (n ? 1) A. We 1may now drop the s-uffixes and regard Q as a function

 of 1. This (1, Q) diagram has many interesting properties.
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 Atmospheric Diffatsion on a Distance-Neighbour Graph. 715

 To illustrate the definition the lower part of fig. 6 was obtained by making

 the prescribed counts on the linear cluster of 7 molecules nmarked above. The

 * S-0-4*-

 0.5

 Q

 0.0
 -5 -4 -3 -2 -1 0 1 2 3 4- 5

 FIG. 6.

 stuceessive distances between the miolecules are, in tenths, 2, 4 6, 8, 10, 12, and
 h is unity.

 ? 3.3. Note on the Step h.

 This element of length should be chosen so that in 'the average Q,. n+-
 the element shall contain a considerable iiumber, say, at least 100. marked

 molecules over the values of I where they are most crowded. Otherwise,

 random errors of sampling might become apparent. Even if this is done for

 most of the diagram, there may be other ranges of 1 where marked molecules

 are so scarce that sampling errors mnight become noticeable. On the other

 hand, if h were made too large the steps in the diagram might become too

 wide; whereas we want the stairs to look like a curve. These compromises
 are perfectly fanliliar in statistical work, and are inevitable. Although men-

 tioned here for completeness, they are really of no importance, as we may
 easily have a billion m-olecules in the cluster. So that in future wve shall

 replace the stairs by a curve drawn through the centre of each step. In other

 words, the mean number of neighbours per length, like the density, or the

 concentration, attains a " quasi-limit " wheni the element of space has a magni-

 tude lying in a certain range.

 ? 3.4. The (1, Q) Diagram is Symmetrical about the Q Axis.

 For the distance between every pair of molecules is counted twice, as negative

 from one end, as positive from the other. Therefore, if Q be expanded in powers

 of I only even powers can occur.
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 716 L. F. Rlichardson.

 ? 3.5. As Diffttsion proceeds, the Area enclosed between the I Axis and the (1, Q)
 Curve remains constant.

 F'or this area when expressed in units of I and Q is simply one less than the

 whole number N of marked molecules. This is easily proved from the de ini-

 tion of Q. And by, hypothesis N remains constant.

 This property of the graph suggests that Q muist satisfy a differential

 eqtuation of the type

 aQ ;3 _ a some function of 1 which attains
 -I a a limit as I - 0 equal to that

 alt-tained as l -oo
 for, if so

 ~Sdl -- .
 at

 ? 3.6. The (1, Q) Diagmam exhibits the Size of a Linear Cluster.

 For if the distance betwee.-a the extreme molecules at the opposite enids

 of the cluster be L, then Q is zero for all values ofI 1I greater than I L ;
 and Q is finite when 1 ? IL. Thus, the extreme width of the 1, Q curve
 is twice the extreme diameter of the cluster. rj'he relation. between the standat3d

 deviatiobs will be discussed in ? 6.8.

 ? 3.7. The Cha(nging Form of the (1, Q) Diagram as Diffusion proceeds.
 It is evidenLt from the foregoing that if there is onlv one linear cluster, and

 it spreads along its line, the (1, Q) graph must spread along the 1 axis. And

 as the area under it miust be const a-nt, its mnean heiglt in the Q-direction] must
 decrease.

 Let us consider another very simple case (analogous to the melting of a

 crystal).* Suppose that initially-niarked molecuiles are equally spaced at

 intervals of one centinetre all along t.he line without bound in eithler direction.

 What will the (1, Q) graph look like ? No molecule will have a neighbout
 nearer than a centimetre, so Q is zero -for 0 < 1 < 1.

 At 1 1 cm. neighbours are indefinitely common and Q is infinite. Again,
 there are no neighbours in the ranige I < I < 2, and so on. The graph

 consists of a series of infinities of Q at 1 (1, 2, 3, 4, ... cm.) with Q 0
 everywhere else.

 Now suppose that diffausion takes place. Can we find tlme changes from Ficks

 equLation ? Not fromn it alone, for Fiek's equlation is a statement about the
 gradients of a continuous fu.nction of position, vhereas we yave only particles

 * Note added December 7.
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 Atmospheric DiJusion on a Distance -Neighbour Graph. 717

 widely separatecd. If Fick's equation is to be applied to this special example,

 it would have to be by the aid of an additional hypothesis derived from the

 theory of probability. Instead, I get the following from memories of snow

 flakes falling, of the Brownian miotion under a microscope, or of foam circulating

 on a millpond. With these in mind, it is evident that the perfect regu-

 larity of the arrangement of marked molecuiles will soon be a little disturbed.

 Molecules will acquire neighbours a little nearer and a little farther away than

 the exact 1, 2, 3, 4, ... cmz1., and neighbours at these distances will no longer

 be infinitely comminon. That is to say, the infinities of Q will be softened down

 into peaks with spreading bases. In an early stage the bases will not join;
 there will still be no neighbours at distances, such as 1, 11, 2-1, ... ems. In

 this stage the area enclosed betweeni each peak and the I axis must remain

 constant. The form of the intermediate curve shown in fig. 7 is intended

 mnerely to suggest that flattening proceeds more rapidly as I is greater; other-

 vise, the curve is a guess. Later (?5.4, ?6.7) some other cases will be

 discussed qualntitatively.

 SAMPLES OF DISTRIBUTIONS EXTENDING BOTtWAYS
 WIrTHOVT ENO

 MARKEO MOLECULES INITIAL
 IN POSIT-ION INTERMEDIATE . O

 ON A LINE. ) FINAL 4 0 *

 Q THE MEAN NUMBER OF

 NEIGHBOUR(S PER LENTTH l JU IL iL AS A FUNCTiON OF
 THE DISTANCE APART, L

 FIG. 7.

 ? 3.8. The, Final State after Thorough DTifasion.

 From the foregoing we should expect the final state to be represented by a

 straiglht line parallel to the 1 axis. This expectation is confirmed by con-

 siderations of probability. For there seeins no reason why the number Q

 of marked molecules per lenigth should have any dependence upon the distance

 to any molecule, when the distribution is purely ranidom.

 ? 3.9. A Failure of Concentration as a Descriptive Idea.

 In the preceding special example, if we are to speak of concentration at all,

 ve nmust take a long element of length, say 1,000 ens.. in order to have a good
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 718 L. F. Richardsorn.

 nany marked molecules in it. Then all thalt can be said about the concen-

 tration is that it was initially independent of position and remained so alwavs.

 Aecording to this view nothing happened. How dif erent from the lively
 process shown on the (1, Q) diagram!

 ? 4. FICKms EQUATION AND THE IDISTANCE-NFE1GIGB3oU:R DIACPAM.

 ? 4.1. Introduction.

 The new theory which is intended to apply to both eddy- and mole-

 cular diffusion ought to be consistent with Fick's equation in the special case

 of no eddies. Let us now explore this coninection.

 We have seen that the idea of the " concentration " of miarked miolecules,

 givren as a function of position, has in one instance signally failed to describe
 that which we wish to d1iscuss. Fick's equation, being based on the idea of

 concentration as aJ functioin of position, has failed there also. Elsewhere we

 shall find both very useful.

 ? 4.2. Continutous Concentration.

 In order to bring Fick's equation into our theory wNve must suppose

 that the concentration. v, defined to be the nunber of marked molecules per

 Iength, is a continuous function of x possessing derivatives 8 a , 02vj02

 This supposition is a little artificial. Buit it seems likely that Av/Ax realiy
 attains with sufficien-t accuracy a quasi-limit when Ax is neither too large nor
 too small. Fick's equation is then

 X2v

 Nlext Q must be redefined in terms of v. The definition in terms of con-

 tinuous coneentrration can be miade to agree with that in terms of partildes,
 eXcept as regards neighbours as close as or closer than the closest pairs of par-

 ticles. As a remrider of this, often unimportant, discrepancy, the new funetioin

 will be denoted by smiall q. For inst;ance, if each of the particles in fig. 7

 were replaced by a small dot of continuous substance, then q would have an
 infinity at 1 -- 0 whexe Q is zero.

 j 4.3. The Definition of q applicable when the Diffusiny Substance is Continuous,
 not Molecalar.

 AVe take any poinlt x on the line at which the coneentration is v a ftunctioni.

 of x and time only. It will someti-mes be written v (x, t). We proceed fron

 x a further distance I to x + 1. Let the concentr&tion at x -d- 1 be v. Here
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 Atmospheric Dyiffsion on a Distance-Netghbour Graph. 719

 va unlike v, must be regarded as a functioni of three independent variables

 e, I and t, and may accordingly be written v1 (x, 1, t). The analogue of

 Aq .nTt in the previous definition is here simply v, regarded as a function of 1
 while x is fixed. Thern, because in taking the mean, each particle comes in once

 as origin, we mnust here form a weighted mean, the weight being v. We thus

 a,live at

 J( (x, t) . v,(x, 1, t) dx q Limit A (1)
 N -> -z v (x, t) dx

 This leaves q a funetion of 1 and t only.

 If there is a limit there can only be one, so that to a given function v (x)
 only one function q (1) as defined in this way can correspond. As we shall see

 later, the converse is not true.

 It generally happens that the integrals in the numerator and denominator

 attain their limits separately, and when this occurs we can write the definition

 n the simpler form

 q _ v (x, 1). vi (x, 1, t) dx. (2)

 ^ ,here

 N - Jv d'x (3)
 00

 so that N is the wvhole, nunmber of marked particles as in the definition of Q.

 ? 4.4. Correspondence of Areas on the (x, v) and (1, q) Graphs when the Areas are

 Finite.

 I dt Ij v (x), v,i(x, 1) dx dl.

 Since the termini a re independent of one another, changing the sequence

 Of integrations makes no difference to the result. Integrate first with respect

 -o 1. Then as the range is infinite, the inner integral transformns thus

 V, dig Vt 1S -- V d,, -=- N. - rf co
 Therefore, on inserting this value of the inne.2i integral

 q dl N vdx=zN.
 So

 fqdl vdx,

 a result which we shall often require.
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 720 L. F. Richardson.

 ?4.5. The Differenial E quation for the (1, q) (a 6h wke"# the Diffusion
 Fickian.

 It will now be proved that--

 NVhen there is -no mean motion or eddies then q, the -Mnea:.1 number of neigh

 bour- per lengt h, is related to the time t and the separation I by a diferentill
 equation lilce Fick's, which relates the concentration v to, the time t and th-(>

 position x; but for q thIc difAsivity is double that for v. I is assumed tha,
 vd7vldx vanishes at i nity.

 If I1 = - vvj, then: becatise avlax -- avjal an 2vd 1 /2 -a^aX 32 /1I, may bh
 proved xwithout any assnlmption about vanishing at infinity, or ab(ut Fick',
 equatioi) that

 2- a2f aL2 a;2V 2,R
 9, 2 - 1 ,=V9- il -.( ) ax2 Dx 2 X2- +~-

 In view of Fick's ecquation, naiely,

 D2v a2 VI S ?U~. i%~Yi and Ui _
 the second n menber of (1) transJforins, ii to

 T'lhus v, vi no longer appear separately, and their product tl satisfies the bhean
 eqiation

 DII (3a21 3 a2ff 32 JT --2 _1-2-(4
 I. aX al D12

 Nowr

 IL 2-(zNq,t9

 wnd on integrating the li-equation with the proviso that ;1 /Dx and diT /3 both

 vanish as x + oo and - o0 we obtain

 aC = 2K (2 d

 Com are, this with (2) and t:he tiheo:rem, is -proed.l

 * ? 4.6. Theorer: The Effect of a Mean Motion indepenet of x disappers eaike

 the number of ATeighbours per Lenzgth is related to Separation and Time.

 For, by the definition, q is independent of thRe l-oice of the origin of 5'X,1t
 so, if the mean velocity it-, is inidependent of x, we can get rid of X- by giving a

 * ? 4.G WIas added, and the corresponding alterations were nmade, in ? 5.1, ? 5.2, ? 8. ec.i
 'December 7.
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 Atmospheric Diffusion on a Distance-Neighbour Graph. 721

 suitable velocity to the origini of x. This can be done even if v is an arbitrary

 function of time.

 For simplicity in ? 4.5 it was assumed that there was no meali Tnotion.

 Actually when K has been derived from observations of smoke or of balloons,

 the mean velocity has customarily been taken into account by using as the
 definition of K some equation more or less equiivalent to ?1.1 (1), in which *,
 iv ?T appear.

 We see now that

 aov a a,
 at ox ax-

 leads to

 -q - =2K , (2)

 in which fi does not appear.

 Incidentally it is of interest to take the form (1) in place of ? 4.5 (2) in forning
 the H.-equation. We thws obtain

 .-I , i2t, = K {a112 - + 2 2}(3)
 at a x aX ax al a1 2

 and, on integration with respect to x, the term in it vanishes if 11 has the same

 value for all indefinitely great values of I . Thus we arrive again at equation
 (2) of the present section.

 ? 4.7. * The Present Theory, written for Diffusion on a Straight Liine, is

 applicable also to the Projection of Three-dimensional Diffusion on to this Straight
 Line.

 For let p be the n-umber of marked molecules per volume, and let then. be

 diffusing according to

 aP - a- (KaP) K a +] a'K-LP,ZO) ox a ax) y ay az az
 Now project each molecule normally on to the x-axis, and let v' be the number

 of projections per length. Then

 v' p dy dz. (2)

 Leb us assume that p vanishes at infinity in such a way as to make vY finite.

 On integrating (1) with respect to y and z so as to produce an equation in V',

 the term aQ(K F2) yields a by

 -00 y 00 ay-
 * j 4.7 and consequent explanations elsewhere were added on December 7.
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 722 L. F. Richardson.

 and we may usually safely assume that the integrand vanishes. The term

 4 (K Q8'behaves similarly. Thtus there results
 az)

 K - (3)

 This is the interpretatioin that mLust always be given to the present theory

 before it. can be applied to observations.

 ? 5. NONx-FICKIAN DIFFUSION.

 ? 5.1. Generalisation for Atmospheric Eddies.

 AWhen the diffusion is molecular botlh equations ? 4.6 (1) and ? 4.6 (2) correctly

 describe it. When the eddies of the free atmosphere come into action neither

 of these two equations describe the phenomena correctly; but whereas in

 Fick's equation the defect appears to be incuirable, it is very easily remedied in
 the new equation now presented. That is to say, the chief advantage of the

 variables 1 and q, to which all the foregoing is m-erelv preparatory, appears
 whien we consider the effects of eddies. For, as already stated, observation

 ,shows that the rate of diffusion increases with the separation 1 of neighbours.

 AlVe can represent this by writing

 a a I(F (1).

 where F (1) is an increasing function of 1. In passing it shouild be noted that

 it vould xot do to write the second mnemWlber F (1) . a2q/al2, for then 1l

 would not necessarily vanish and the total number of particles vould not be

 fixed.

 i-f we were to modify Fick's equatiorn by writing

 EY + o a(f(x) -)

 tlhat would nlean that the difiusivity depended on positionl, all ei ect altogether

 different from the one represented by F (1), anid one which will not be stuidied in

 this paper. Instead, the paper discusses anl atimosphere in which the diffusivity

 is independent of position, but depends on separatioii.

 ? 5.2. Reduction of zxisting Observations.

 1k4 u.s next consider some observations wvhich show Ihow F (1) depenuds onl 1.

 The observations have beena madle for other purposes, and are not quite what
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 Atmospheric Dftfjusion on a Distance-Neighbour Gr-aph. 723

 is desirable here. The quantity usually measured has been K in the equation

 ? 1.1 (1) or something equivalent.

 In accordance with ? 4.5 (6), F (1), if it were merely a constant, would be

 equal to 2K. Actually, many values of I co-operate in the diffusion, but those

 which- are largest not only produce most diffusion, but also have most weight
 in determiining K, when K is calculated frolmi the mnean squcared deviation from

 the mean. Thus, it seems likely that we shall get the right order of inagnitucLde

 both for F (1) and 1, if we put F (1) equal to 2K and I equal to the standard de via-

 tion of the particles from their mnean. As 1 varies in the ratio : 109, evenl very

 crude estimates of F (1) show its relation to I quite clearly.

 When K has been obtained from the variation of wind with height, 2K is

 still assumed to be roughly equal to F (1) and the corresponding I is taken to be

 the mean vertical separation of the anemometers that were u-sed in finding the

 second deri.vatives of the wind-components with respect to height. AVhen the

 observations were obtained from pilot ballooins, we know that I cannot be less

 than the vertical displacemen.t of a balloon between. two sightings, so that I

 will probably not be less than 100 metres. On the other side I cannot be greater

 than the height of the observation aboye the grou.nd. The mean of these two

 distances has been taken to be 1.

 The distance at which molecular motion is the chief cause of diffusion in

 free air mnay be roughly estimated in the following way :--Suppose that a very

 thin lamina of marked molecules could be produced in still air. The conceni-

 tration should be arranged to be greatest in the central sheet and to diminish

 towards the outer sheets according to the law of error. The thickness of the

 lamina, as measured by a standard deviation from the mean, wouild then inierease

 so that*

 (standard deviation) = -/(2Kt) where t is the time -from indefinite thinness.

 Now, the value of K due to molecular diffusion is about 0* 17 cm.2 see. .
 Hence, we have the following :

 time in seconds .. .. .. .. .. 0 0?001O 01. 0*4 I 1
 thicknessasmeasuredbystandarddeviation,cms. 0 0-0180'058 0.18 0-58

 These, numbers show clearly that molecular diffusion is very effective when the

 lamina is 0 01 cm. thick an.d much less so when it is 0 1 cm. thick. Now, if

 we look at cigarette smoke in the open air and ask ourselves at what separation

 molecular motion will produce rather more effect than the eddies, it is lnot

 difficult to make a guess. I put it at I = 5 X o-2 cn. The integral, power of

 ten is really all thati matters.

 * ' Phil. Trans.,' A, vol. 221, p. 6 (1920).
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 724 L. F. Richardson.

 TPle data are summiarised in tlhe following table

 PRcference. K I
 cm.2 sec1 cm.

 Kv fromn molecular diffusion of oxygen into nitrogen (Kaye ,
 and Laby's ' Physical and Chemical Constants I). ) 17 x 101 5 x 1O-
 For I see preceding discussion. 9

 K at 9 metres above ground from anemometers at heights 1)
 of 2, 16 and 32 metres (W. Schmidt, ' Wien. Akad. > 3 2 x 10 1-5 x 103
 Sitzb.,' Hla, vol. 126, p. 773 (1917)). 9

 K from- anemometers at heights of 21 to 305 metres )
 (Akerblom, F., 'Nova Acta Reg. Soc. Upsaliensis' 1 1 -2 x 105 1.4 x 101
 (:190:8)). 9

 K from pilot balloons at heights between 100 and 800 X 10
 metres (Taylor, ' Phil. Trans.,' A, vol. 215, p. 21 (1914), 06 x 104 a x 10
 also Hesselberg and Sverdrup, 'Leipzig Geophys. Inst.,'
 Ser. 2, Heft 10 (1915)).

 K from tracks of balloons either manined (L. F. Richard- )
 son, 'Weather Prediction by Numerical Process,'p. 221) 2
 or ncot manned (Richardson & Proctor, 6Royal f
 MlTeteorological Society Memoirs,' No. 1). 9

 Volcano ash, samie reference as last .................................. .. a x 10 ( 5 x 10l

 DiTfusion due to cyclones regarded as deviationis from ]

 th.e rnean circulation of the latitude (Defant, ' Geog. Jos
 An-n.,' H. 3, also (1921), ' Wien. Akad. Wiss. Sitzb.,' 1
 Ila, vol. 130, p. 401 (1921)). 9

 Since, when not obstructed by the ground, smoke spreads about as -much

 horizontally as it does vertically,* the observations at the smaller values of 1,

 though made in the vertical, can be treated as applicable to the horizontal.

 Th-uns the whole collection is coherent.

 The logarithms of K and I wArhei plotted on a graph (fig. 8) are seenl t;o lie
 close to a line of slight curvature. It is hardly worth while to discuss d.etails

 uintil observations h1ave been made in a manner appropriate for the

 deteirmination of F (1) rather than of K. How such observations could be

 ob-tained will be discussed in ? 7.

 The straight line on the locamithmic diagram whichw corresponds to K,C=

 0-2 j15J also fits the observations almost as well as the curve in the limited

 nrange between I = a metre and I 1-- 10 -klometres. For rmabthematicai

 simnplicity this formula will be used in the illustrations which follow.

 Th in this range F (1) = 0 4 01/3 approximately, when the units are

 ceu ti:netres and seconds.

 * ('. 1. Taylor.
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 Atmospheric Diffusioa on a Distance-Yeighbour Graph. 725

 The equation for the changes in the (1, q) graph is then

 - /D at at ( al) (1)
 where the constant; z is of the order of 0 4 cm.2/' see . This equation
 s,unmarises the subject.

 10

 z

 LA

 ,.X
 _J

 0 5 10

 LO&0io (SEPARA-T-ON 1.IN CM.)

 Fin. 8.

 5.3. Analogy with the Diffusion of HIeat.

 The, fundamental equation ? 5.2 (1) cani be brought into touch with some

 standard mathematical forms by changing the variable I to l1/3 = s Say.
 For this transforms the equation into

 __ -Cs f2 aq + a2q} at 9 o,,aax aa,2)0
 which is Foiurier's equuation for the diffusion of hleat in a homogeneous solid,
 where the isothermal surfaces are concentric spheres of radius ot, and the

 dLilYusivity is e/9. The equivalence of the equations in oc and I is complete,
 except at I 0, where a source of sink mighit occur. In choosiig a solution
 we must be sure whether it makes the w-hole number of marked molecules

 independent of time.
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 726 L. F. Richardson.

 ? 5.4. Non-Fickian DTffasion of an Inftiia Point-Csti er on a Line.

 A solution due to Fourier,*

 q =.A (4ts) 9)-3I2 . -it- V'l (1 )

 in which A is independent of t and (x, represents a process in which at t 0

 all neighbours are indefinitely close, and as time proceeds they spread out
 continually. The corresponding value of N is

 -r ^o r~~~~a',a a>2

 N Aq d __ A (4to9>-3l JTh. 3" ,. doc.

 Putting

 2(X2
 4tc/9

 it is found that

 N 3A eA252d3. (2)

 Thus N is independent of time, as required, and there is no source at I 0..

 except at t = 0.

 Fig. 9 exhtbits this funiction in the special form

 1213

 when e is given its observed. value of 0 4 C.G.S. units.

 At t 0= the graph would consist of ani infinity of q at I- 0, and q 0

 elsewhere. One graph shows the distribution at t _ 100 seconds. Neighbours
 as distant as 4 metres are now not scarce. Five nminutes later, at t = 400

 seconds, neighbours at 40 metres are nioticeable. In the corresponding

 distribution in space the isopleths of concentration are parallel planes. The

 standard deviation of the marked molecules fron their mean position xwill

 be investigated in ? 7.1.

 ? 6. RETURNINO. FROM NUMIBER OF NETGHEBOURS AS A. FUNCTION OF SEPARATION

 TOWARDS CONCENTRATION AS A FuNCTION OF POSITION.

 ? 6.1. Intro action.

 In the couirse of the theory we began with concentration v given as a fauc -

 tion of position x. We wished to know xvnat becarae of the distributtion w1ien

 * See E. WV. Hdobson, ' Warmcleitung, Eneyk. Mati. Wiss.,' vol. 4, p. 195.
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 Atmnosjpheric Diffusion or a Distance-Neighbour Graph. -727

 diffusion occurred. Fick's equation being contrary to the facts, and no suit-

 able adjustment of it being in sight, we had to change the variables from

 (x, v) to separation 1, and mean. n-umber of neighbouirs per length q. This

 was easily done. Then the equation - = ( 143 ) gave the changes
 at ai\ ati

 in the (1, q) graph. But, after all, it is v as a function of x that we should

 like to know; so that, after the diffusion has occurred, wve wish, if

 possible, to change the variables (1, q) back again to (x, v). This is not so

 easy, and can only be done in part.

 40 _

 too

 at L=0

 30

 20

 0~~~~~~~~2

 0 10 20 30 40

 SEPARATION 1I 1N METRES

 1FmC. 9.

 As with the problem of integration, a general method is lacking, and so it
 seems desirable to give typical examples and a variety of processes suited to
 different circu.:mstances.

 It would be too much to expect that the (1, q) graph should give us enoulgh
 information to allow the distribution of particles in space to be reconstructed
 in all its details. For the process of taking a mean has been used in form-ing

 q to get rid of a superabundance of detail. The process is irreversible.
 We cannot evolve tlhe detail again fronm the mean.

 The origin of x is not represented by anything in the (1, q) graph.

 VOL. cX.-A. 3 D
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 728 L. F. Richlardson.

 ? 6.2. Not every Even Function f (l) which is Positivefor all Values of I can serve

 for the Number qf Neighbours 1er Length.

 Try, for instance, to imagine how the

 populationi could be distributed on a

 ) line so as to produce a (1, Q) diagraim

 IN) g11<i-e fig. 10. If you have neighbours at
 mrany distances lying between 5 and 8

 --i- km. some of them must have neighbours -1 0 1 2 3 -1 5 6 7 9

 - K LMo IEr TEm J't ditanes less than 3 km., so the

 diagram would haave to have a central

 lhump. As drawn it cannot be an (1, Q) diagram.

 However, when, as usual, q1 has been produced by difiusion fromi qA, and

 qA corresponded to VA, then if the mathematics fits the physics, as it appears
 to do, there mutist exist a vB corresponcing to q33.

 ? 6.3. The Central Value of q.

 This is evidently q(0) = - A v2 dX wh.en v vanishles at infinity.

 ? 6.4. Uniformity.

 Given that v = b a quantity independent of x.

 Therefore v, (x, 1) = b also.
 And by the definition of ? 4.3

 62 Cl 6b

 q -Limit -A= bz.

 So q is independent of 1.

 As to the converse, see under Fourier series.

 ? 6.5. A Siingle Linear " Town."
 Given that

 e

 Then

 N = | vd & 1

 Also
 sv I- -1 e={(x+i)2-L 2} :1 t-- (12x+Q/12))- j (12/2)
 2= 21r
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 Atmospheric DRifftsion on at Distanwce-Aeighbour Graph. 729

 Therefore

 vv1 d ic - 1 e - (1214) + e _1. (J2x + 1/]2) /\
 V(2n) \V2 Vk=27e) _J e d(V2 V2'

 See also a note at the end of ? 6.7.

 ? 6.6. Expansion iin a Fouriier Series.

 There may be distributions of conqentration, extendinig indefinitely in bothi

 directions, for treating whichb Fourier series will be suitable.

 Let
 fl -*- 202

 v(x) =LAO + E {A,, cos nx - Bn, sin nx}, (1)
 2 n -

 n being a positive integer and the constant Ao being so chosen as to make v
 everywhere positive. Then it may be shown that

 2 (0 + 1) {f2- 4 E (A + Bn2) cos nl} + finite terms

 q Lm - Ao (0 + A) + finite terms

 - Ao -+ A (A,2 + B 2)cos nl. (3)
 AO n=l

 The fulndamental wave-engbh in q and v has been taken as 27. Any other

 value could be introduced by changing the units of x and 1 in the same ratio,

 and the relations between A., B. and C,, would remain as stated.
 In particular if q - CO simply, then v - q is a solution, and on account

 of the generality of the Fourier series it appears to be the only possible one.

 ? 6.7. T'he Correspondence of Diffusion from Points on the x and I Axes.

 Time is not involved in the connection betwveen the position-concentration

 graph and the distance-neighbour graph; but we can bring in time as an aid

 to finding the connection. Suppose, for example, that the diffusing substance

 is initially concentrated in five masses each consisting of n particles near five

 equidistant points on the x-line at intervals b of x. Then there are neighbours

 near 1= 0, ? b, ? 2b, ? 3b, ? 4b, but for no other values of 1. The relative
 numbers of neighbours in these five classes are easily counted.

 Next, suppose that Fickian diffusion occurs. Both graphs change, but at

 3 D 2
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 730 L,. F. Richardson.

 the same instant they inmust always corre.spond to one aiwother. Fig. 1I.

 shows the two graphs at one instant.

 -HTT . 1 -|O47 1_ - I
 _03 -4_Q{ - -- -3 - _- _

 Now , a givei distribution of v in xinay be seen froni the definition of q

 to lead to a unique function q of 1. Tlhus, q (1) does not depend on -how v (x)
 came to be, but only on what v (x) is. YeTe hIixe arrived at the correspondence

 n this exaiple by Fickian di fusion. But if the same -v (x) had been prNoduced

 by non-Fickian difusion, or in any oth.er wa y, it would correspond to the

 The simpler problenm of ? 6.5 rway also be solved in t,his way.

 ? 6.8 Moent?,ts. Standaird IDeiial'ton.

 Formula-, are usually fitted to frequency curves by way of Imonients (vide
 Karl Pearson, 'Biometriika,' vol. 1, p. 263). Consider, therefore,

 - +t

 q rl V1 4J9, say, 1

 which is the n th mnonent-coefficient ' of the q (I) dtistributiol about its mean

 17 0.

 AYe shall treat only the case in -whilchi N and aII the moment-integrals are

 Ii ite, as oceus whlen q an-d v vanishi entirely in the outer regions.
 Therefore, in accord anCe witlh the definition of q in ? 4.3,

 rtn (> ) yt (x, 1) dx dI. (2)

 .Now the lImints of integration are independent of one another, so that we mnar change the sequLence of integrations without changing anything else. Let us

 itegrate first with respect to 1, remem bering that p (x) is independent of 1.
 Therefore

 I Nf v(x) {j1~ Nx(), I)t . di}cl. (3)
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 !LtmJospheric Diffusion on a Distcace-Neigyhbour Graph. 73-1

 Sinice vl- is the conce itration at the point (x + 1), the inner integral is the nth
 nioi enit-coefficient of the distribution of concentration taken about the point

 O. (n conmparing equatio.ns (1) and (3) iD is seen that

 the nt7i moment-coefficient of the distribution q (l) of neighbours,

 about its centre 1 0= , is the imean of the nth moment-coe eients

 of the distributioon of marked m)eolecules takeWn about every marked

 mowlecule in turn. (4)

 Since q (1) is an even function of I its momients of odd order about I = 0 all
 vanish. That is,

 0 -1 p+-- V-== V-^7, etC. -

 Fvor the e-veii. mom: nts the expression can be simplified. The most interesting

 ase is n = 2. Let x,, the centre of the distribution v (c), be de.fned as usual
 by the equation,

 ). (x (x- X.) (dlc 0. (6)

 rThere is a familiar th.eoremi in m Xchanics concerning radii of gyration rTound

 parallel axes. In lile m-anner it can be proved that if a,,, be the second mome.nt-

 coefficient of v (x) abouit the cenitre c, , and a7,2 be that about aty other point c,
 then

 crx2 G 2 + (X cc X,1,)2. (7)

 From). (7) and. (4) it follows that

 sL2 -I v (X) .{ar,,,Q ? (x -X cn,)2} dX
 NJ

 2- 2SJ* '( (8})

 Now the standard deviations of q (1) anid v (x) are respectively VL2 and a7M.
 HenGe, we have proved that : the standard deviationt of the q (1) area from its

 ce itre I- 0 is V2 times the standlard deviation of the marked molecules fromn their

 centre x,c. A glance at the distance-neighbour graph thus gives n.s a good
 imlpression of the size of the cluister oni the line.

 The slewwness of the v (c) distribution is not given us by the (1, q) graph,

 because skcewness depentds ulpon a i omnent of odd order. But the higher even

 xmoments cotnld be found. For the fourth moment-coefficient I find

 (c) .( - x,,,)J' dc - 2 (9)

 The proof of this is om.itted for brevity.
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 732 L. F. Itichardson.

 ? 7. THE DETEtR.lINATION OF THE DIFFUSIVITY BY OBsERVATION.

 ? 7.1. The Stanlard Deviation of a Linear Cluster formed by Diffusion on a
 Straight Line from a Point, the Diffusivity for Neighbours being F (1)
 where ? is independent of 1. The Determination of ? from2n Observations.

 It has already been proved in ? 5.3 'mand ? 0.4 tha-t under these cirem.stances

 wie have q given by ? 5.4 (1).

 To find th:e seconld moment w which is defilned ia ? 6.8 (1), put,; as before,

 oc2~~~~~~~~~~~~~1

 Thleni it mavy be shown that

 ---= 3A (4t/9) e?3 d. ()

 Now if we. denote

 ~ et(3' d' by 8()

 it ma y be proved by integratioi ty plarts that

 Also it is wNJtelfl knownt that 8o --=,-". And so

 7 x 5x3x [ 1-01

 Also for finislhing tlle calculation of N' wh'Dtich was begin in ? 5.4 wv,e slneed

 S2 V 0 886. (6)

 With these stibstitutions it foll)ws that

 3A (41 6 /9) -05 ( 193-
 2 3A4V-\ 6' (7

 But bv the t-heorem (? 6.8 (8)) of the previous section .i,the s tan(i.dr(] deviaation).

 of the marked moleculles froml the:ir mrYe;an posit-ion o)n the line is / (?.,m).

 We/- \/- (4t?i9) s1; 1 - (24>31 (?1) (8)
 Or solviimg for s

 70 13UiL , 5 j7 (9)

 This fornula enables the eoefficient a in. the ditfsi.-viAVty for neigh bours zi4'j to
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 Atmzospheric D?'ffasi'oI on aY, Distacnce-Neighbour, Graph. 733

 be determined from the scatter of particles on a straight line. The particles

 will realy move in three dimensions, but the formula can be applied to their
 projections on the line, as -was shown in ? 4.7.

 Suppose now that the formule we have thuls deduced from the non-Fickiar1

 diffusion of ne'ighbours with diffusivity S14/3 represents the true sequence of

 events, but that the observations have been reduced instead by the formula*

 which is a necessary consequence of the Fickian diffusion of concentration with

 con,stant diffTussivity K, namely,

 2t' (10)

 what values will be obtaine(d for K ?

 Eliminating t between equations (9) and (10) it is found that

 K z.an- =. 0'330?c/3 (ii)

 This show-s that K, obtained in thlis -way, will increase as the 4/3 power of the

 size 0,, of the scatter, as, in fact, K does (see fig. 8).
 if we regard F (1) as what we wish to find from published values of K,. then

 wve must put

 F ( ) lt3 _ K 3.03K (12)

 As a necessary preliminary to finding out that F (1) was nearly of the forin

 14/3 I made, in ? 5.2, the guess that we should obtain the right order of magnitudes

 for F (I) and 1 by putting F (1) = 2K and I --- o,. These imply that F (a,l)
 2K. It is seen that the guess is am-ply justified.

 BUt we may now revise the value of - from 0 4 to 0 4 X 3/2= 0 6 cm.2/3
 sec.-". This is only a mean value roughly applicable under average circum-

 stance in the range one metre < I < 10 kilometres. A more detailed study will

 reveal variations of 10 times or more in e according to the up-gradients of

 temperature and meani-wind and other circunmstances. Even so, e will be
 remarkably more constarnt than the diffusivity K for concentration, whicb, as

 we have seen, varies with 1 about a billion times.

 * This formula was deduced bv Einstein in connection with the Brownian motion
 ('Ann. der Phys.,' vol. 17 (1905)). Something like it was employed by G. I. Taylor for.
 reducing the Scotia kite aseents (I Phil. Trans.,' A, vol. 215, p. 10). The formula was
 given explicitly and much used by tlhe present writer in "' Some Measurements of
 Atmospheric Turbulence " (' Phil. Trans.,' A, vol. 221). In the latter paper there are two
 independent proofs of the formula, one of which in Section IV is a correct deduction from

 Fick's equation, the other in Section V is quite spoilt, alas, by a wrong sign in
 equation 3, p. 9, and a risky assumptioni about correlations. This error affects
 equation (32) on pp. 15. anid 27 of t he aforesaid paper, but the rest of the paper holds
 good independently.
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 734 L. F. Richardson

 Various observers (Dobson, Richardson, Roberts) lhave separately noted the

 fact that the width of an individual trail of smeoke from a poiIt source, when

 mneasured by its standard deviation a,,, from-f its mean line, is such that a. is
 roughly proportional to tl/2. This inmplies that tfie difilsion is Fickianl in certain

 short ranges of 1, the difiusivity for neighbours, F (1) being there independent of

 1. When an enorxmously wider range of 1 is considered we have seen. that F (1i)

 is proportional to 14/3 roughly.

 [Note added December 7, 1925.-The observations collected by Richardson and

 -Proctor in the range 6, = 3 km. to 86 kmn. tfit well withi. the slope, of the sm coth
 curve in fig. 8.

 These apparently contradictory facts mnay perhaps be reconciled if we regard

 variations in K, defined by ?1.1 (1), as being due to variations in the type (f

 nmean chosen in forming it, 'v, dI in the san-me equation. As long a the mear is

 always taken over the sante length a-ndti ne, K miay well be mnore or less constant.]

 ?7.2. Theory of a Second Method by wfhilch the JTffsivity F (1) might be observed.

 It -has just been sho-wn. that the value of ? In ?J4/3 - F (1) can be extracted

 from observations made with a wide range of- I all in operation together. While

 this is possible mathematically, it seenms, from the stand}point of practical
 physics, to mix too nany phenoloena and umnneeessarily to assume that s is

 independent of /. It would be better to observe separately at or near each

 selected 10. This can be done by a proces,s which-I will be derived fromn the

 non-Fickiani equiation

 aq - _ F (1) ', at al~W
 S,luppose that the "]marked mnolecules are initially coinenttrated in two

 plane parallel laminae, distant i0 from onie another and similar to one another.
 The neighbour-distance diagram-i then consists of three sharp peaks, as suggested

 qualitatively in fig. 12. The cenltral peak shiowms the very close neighbours

 0

 Fle. 1 2.
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 Atmospheric Diffatsion on a Distance-Neighbourz Graph. 735

 which each marked mnolecule has in its own laminia. The lateral peaks show the

 nteighbours in the other lamina. The spreading of the central peak will go on

 very much as if there were only a single lamina (? 5.4, ? 7. 1), and does not concern

 us now. If the lamina3 are observed cluring a time such that they spread

 through only a small fraction of 10, then we miay regard F (1) as a constanit and

 equal to F (lo) in this short range of 1, and may write accordingly

 a = (1) F (lo

 An appropriate solution of this equation is

 A = t.2 e tF (1),

 which implies that the peak on the (1, q) diagram hlas the form of the normial

 curvTe of error, q playing the part of the "frequeney." The standard deviation

 of the curve from its mean lo is {2tF (o)}11'.

 In determining the standard deviation from- the observations it is, of course,

 -ssential that the individual values of (1 - 10)2 sho-uld be weighted in the
 proper way. On referring back to the definitioln of Q in ? 3.2 it is seen that we

 must form every possible pair of marked molecules, one from each lamninia, so

 obtaining a set of distances 1. lIet [ ]Q denote the mean for all members
 of the set. Then in ordinary circumstances [I]Q lo. AVe next form. the mean

 sqluared deviati-on from the mean and thus find

 Fll (L) = I(1- Q 3. (1)

 In practice the " marked molecules " could be replaced by balloons., for those

 v-alues of l0 which are miany timies the diameter of a balloon. This is so because

 1F (1) increases notably wiith 1. C. H. Ley* h.as invented a valve which allows

 al1 balloon to rise to a pre-arranged height and then lets out some gas so that t-he

 balloon ceases to oyove through the air. That is the type of apparatus required.

 When there are only one or two observers, they could not manipulate many

 balloons at onee, but they might observe pairs of balloons on successive days.

 LXet us try to adapt the observation to this situation. Imiagine first, for the

 sake of the argument, that the observation with nmany balloons arranged

 initially in two parallel laminw 1 apart, is made, anid let Uis denote (1 __ I)2 by p

 * ' Qua<rt. Jouirn. Roy. Meteor. Soc.,' p. 247 (1911).
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 736 L. F. Piiclairdson.

 for short. Thus nany values of p are obtained on one occasion. NText
 iunagine that this observation were repeated once a day for a year, the time

 t being in all cases the same; and not too smiall nor too large. In this way a

 donibe set of valiues of p is obtainled, thus-

 D ays. Pairss on one day -

 p P-12; P: _9 p3

 P21i P22 23 ...

 'The maean value, of .F (fo) for all these observations is F (1o) =[plQs the double

 su:ffix deniotinga the double mean, Q for rows, S for colunmns. AVe cannot proceed

 fu:rther withouLt makin g the asssumniptioni thata ce obtain the general meean of )

 if we select at random one value of pfron? eac row of the dotble set and take
 the mean of them. This looks passabie.

 If so

 -F (IC - J[Wls

 which can be determined by flying a pair of balloons on each of the nmany days.
 This i easure of atmospheric diff sion is in agreenii ut with that to which we

 wvere led by a. search for natural mean (? 2).

 ? S. SUMAnvRY, COLNCL-USION AN-D A BSTRACT.

 The atmospheric dif.usivity in Fick's equ'ation has been fou1nd by various

 investigators to increase from 0 -2 to o1ll cIU.2 sec.- as the size of the cluster

 of diffusing particles inereases froni 10-2 to 10' cm. The effect is due to eddies

 of maniy sizes acting together. There is apparently no way of inodifying

 Fick's equation in order to describe this phenom-nenon. But a new mathematical

 method is here developed in which instead of thinking about, concentration

 as a function of position, we think aeDont q, the mX-eani number of neighbours

 per length, as a function of 1, their distane apart. Formal definition is given
 to this idea, and various properties of -it a.re investigated. For simplicity
 only distributions on an unbounded straight line are considered, or projections

 of three-dimension'al distribtutions on to the line. If the mov-ement of concen-

 tration v is described by Fick's equation

 V 1 a2
 -) 1 (A) --- K

 Ct IVK.r a7
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 Atmospheric Dzffusion on a Distance-NMeighbour G(raph. 737

 whhere t is time, x is distance, 4it is mean velocity, and K is diffasivity.

 Then it is proved that

 aq -K2
 a-t a182

 if, however, the difTusion is " non-Fickian," as in the atmosphere, then the

 former of these equations cannot be generalised, hut t-he latter cani, taking the

 form

 aq_ a IF (1) -

 A discussion of existing observations shows that a rough average value is

 F (1) 0 O 6 14/3 cm.2 sec.-1 for the atmosphere, wvhen I lies between one m-ietre

 and 10 km. The difiusion of a lamina is worked ouLt from these principles. The

 diagram obtained in this way exhibits the size of a cluster because it is proved

 that the standard deviation of the (1, q) area from its centre 1 0 is y/ 2 times
 the standard (leviation of the cluster from its centroid.

 Two methods are prepared for the observation of F (1) by balloons or smoke.

 Various allied topics are examined.

 ?9. LIST OF RECURR-ING SYMBOLS WITH TL1E SEiCTIONS WHERE

 THEY ARE DEFINED.

 q, Vi, ?4.X3 11, ?4.5; (, 1.1; 2 , ?5.2; 3Q; ?53 A; + ?4 1 1, ? 32; V, ? 46 2 -q, 1, ?4.P3 ; t7 4.5 ;F (|)? 5.l ; , 5.2 ; ? I5 .3 ; ,? 5.4 ; ? R,?6.8.
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