吳孟儒 / 副研究員

pi_image

連絡資訊

學歷

  • 明尼蘇達大學物理博士, 2012
  • 清華大學物理系學士, 2005

秘書

沈彩雲 / 886-2-2789-8386

samcy[at]phys.sinica.edu.tw

研究興趣

  • 粒子天文物裡
  • 核天文物裡
  • 微中子物理
  • 超新星
  • 雙中子星碰撞
  • 核元素合成

獎項及殊榮

(1) 國內學術研究獎項 2019-10 108年國家理論科學研究中心物理組年輕理論學者獎

經歷

  • 博士後研究員, 丹麥波爾研究所, 2016-2017
  • 博士後研究員, 德國達姆施塔特工業大學核物理研究所, 2013-2016

學術著作

期刊論文

  • [1]     Tobias Fischer, Gang Guo, Karlheinz Langanke, Gabriel Martínez-Pinedo, Yong-Zhong Qian, Wu Meng-Ru*, 2024, “Neutrinos and nucleosynthesis of elements”, Progress in Particle and Nuclear Physics, 137, 104107. (SCIE) (IF: 12.425; SCI ranking: 10.5%,10.3%)

  • [2]     Sajad Abbar*, Meng-Ru Wu, Zewei Xiong, 2024, “Physics-informed neural networks for predicting the asymptotic outcome of fast neutrino flavor conversions”, Physical Review D, 109(4), 043024. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [3]     An Yu*, Wu Meng-Ru*, Guo Gang, Tsai Yue-Lin Sming, Huang Shih-Jie, Fan Yi-Zhong, 2023, “R-process beta-decay neutrino flux from binary neutron star mergers and collapsars”, Physical Review D, 108(12), 123038. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [4]     Xiong Zewei, Johns Lucas, Wu Meng-Ru, Duan Huaiyu*, 2023, “Collisional flavor instability in dense neutrino gases”, Physical Review D, 108(8), 083002. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [5]     Lin Yen-Hsun*, Tsai Tsung-Han, Lin Guey-Lin, Wong Henry Tsz-King, Wu Meng-Ru, 2023, “Signatures of afterglows from light dark matter boosted by supernova neutrinos in current and future large underground detectors”, Physical Review D, 108(8), 083013. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [6]     Xiong Zewei*, Wu Meng-Ru, Abbar Sajad, Bhattacharyya Soumya, George Manu, Lin Chun-Yu, 2023, “Evaluating approximate asymptotic distributions for fast neutrino flavor conversions in a periodic 1D box”, Physical Review D, 108(6), 063003. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [7]     Xiong Zewei*, Wu Meng-Ru, Qian Yong-Zhong, 2023, “Symmetry and bipolar motion in collective neutrino flavor oscillations”, Physical Review D, 108(4), 043007. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [8]     Guo Gang*, Qian Yong-Zhong, Wu Meng-Ru, 2023, “Signature of collapsars as sources for high-energy neutrinos and r-process nuclei”, Physical Review D, 108(2), L021303. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [9]     Bauswein Andreas*, Guo Gang, Lien Jr-Hua, Lin Yen-Hsun, Wu Meng-Ru, 2023, “Compact dark objects in neutron star mergers”, Physical Review D, 107(8), 083002. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [10]     Xiong Zewei*, Wu Meng-Ru, Martínez-Pinedo Gabriel, Fischer Tobias, George Manu, Lin Chun-Yu, Johns Lucas, 2023, “Evolution of collisional neutrino flavor instabilities in spherically symmetric supernova models”, Physical Review D, 107(8), 083016. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [11]     Yen-Hsun Lin*, Wen-Hua Wu, Meng-Ru Wu, Henry Tsz-King Wong, 2023, “Searching for Afterglow: Light Dark Matter Boosted by Supernova Neutrinos”, Physical Review Letters, 130(11), 111002. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [12]     Manu George*, Chun-Yu Lin, Meng-Ru Wu, Tony G. Liu, Zewei Xiong, 2023, “COSEν: A collective oscillation simulation engine for neutrinos”, Computer Physics Communications, 283, 108588. (SCIE) (IF: 4.717; SCI ranking: 33.9%,3.6%)

  • [13]     Sherwood Richers*, Huaiyu Duan, Meng-Ru Wu, Soumya Bhattacharyya, Masamichi Zaizen, Manu George, Chun-Yu Lin, Zewei Xiong, 2022, “Code comparison for fast flavor instability simulations”, Physical Review D, 106(4), 043011. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [14]     Meng-Ru Wu*, Projjwal Banerjee, 2022, “The production of actinides in neutron star mergers”, AAPPS Bulletin, 32(1), 19.

  • [15]     Oliver Just*, Sajad Abbar, Meng-Ru Wu, Irene Tamborra, Hans-Thomas Janka, Francesco Capozzi, 2022, “Fast neutrino conversion in hydrodynamic simulations of neutrino-cooled accretion disks”, Physical Review D, 105(8), 083024. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [16]     Projjwal Banerjee*, Meng-Ru Wu, Jeena S K, 2022, “Constraints on <i>r</i>-process nucleosynthesis from 129I and 247Cm in the early Solar system”, Monthly Notices of the Royal Astronomical Society, 512(4), 4948-4960. (SCIE) (IF: 5.235; SCI ranking: 24.6%)

  • [17]     Gardar Sigurdarson, Irene Tamborra*, Meng-Ru Wu, 2022, “Resonant production of light sterile neutrinos in compact binary merger remnants”, Physical Review D, 106(12), 123030. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [18]     Meng-Ru Wu*, Manu George, Chun-Yu Lin, Zewei Xiong, 2021, “Collective fast neutrino flavor conversions in a 1D box: Initial conditions and long-term evolution”, Physical Review D, 104(10), 103003. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [19]     Aziz Azni Abdul, Ahmad Nor Sofiah, Ahn S., Aoki Wako, Bhuyan Muruthujaya, Chen Ke-Jung, Guo Gang, Hahn K. I., Kajino Toshitaka, Kassim Hasan Abu, Kim D., Kubono Shigeru, Kusakabe Motohiko, Li A., Li Haining, Li Z. H., Liu W. P., Liu Z. W., Motobayashi Tohru, Pan Kuo-Chuan, Park T.-S., Shi Jian-Rong, Tang Xiaodong, Wang W., Wen Liangjian, Wu Meng-Ru, Yan Hong-Liang, Yusof Norhasliza, 2021, “Progress in nuclear astrophysics of east and southeast Asia”, AAPPS Bulletin, 31(1), 18.

  • [20]     Allan Sung*, GangGuo , Meng-Ru Wu, 2021, “Supernova constraint on self-interacting dark sector particles”, Physical Review D, 103(10), 103005. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [21]     Jian Tang, TseChun Wang*, Meng-Ru Wu, 2020, “Constraining sterile neutrinos by core-collapse supernovae with multiple detectors”, Journal of Cosmology and Astroparticle Physics, 2020(10) 038-038. (SCIE) (IF: 7.28; SCI ranking: 14.5%,17.2%)

  • [22]     Tobias Fischer*, Meng-Ru Wu*, Benjamin Wehmeyer, Niels-Uwe F. Bastian, Gabriel Martínez-Pinedo, Friedrich-Karl Thielemann, 2020, “Core-collapse Supernova Explosions Driven by the Hadron-quark Phase Transition as a Rare r-process Site”, The Astrophysical Journal, 894(1) 9. (SCIE) (IF: 5.521; SCI ranking: 20.3%)

  • [23]     Gang Guo*, Yue-Lin Sming Tsai, Meng-Ru Wu, Qiang Yuan, 2020, “Elastic and inelastic scattering of cosmic rays on sub-GeV dark matter”, Physical Review D, 102(10). (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [24]     Manu George, Meng-Ru Wu*, Irene Tamborra, Ricard Ardevol-Pulpillo, Hans-Thomas Janka, 2020, “Fast neutrino flavor conversion, ejecta properties, and nucleosynthesis in newly-formed hypermassive remnants of neutron-star mergers”, Physical Review D, 102(10) 103015. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [25]     Samuel A. Giuliani*, Gabriel Martínez-Pinedo, Meng-Ru Wu, Luis M. Robledo, 2020, “Fission and the r -process nucleosynthesis of translead nuclei in neutron star mergers”, Physical Review C, 102(4). (SCIE) (IF: 3.199; SCI ranking: 31.6%)

  • [26]     Anna M. Suliga* , Irene Tamborra, Meng-Ru Wu, 2020, “Lifting the core-collapse supernova bounds on keV-mass sterile neutrinos”, Journal of Cosmology and Astroparticle Physics, 2020(08) 018-018. (SCIE) (IF: 7.28; SCI ranking: 14.5%,17.2%)

  • [27]     Gang Guo*, Yong-Zhong Qian, Meng-Ru Wu, 2020, “Neutrino Production Associated with Late Bumps in Gamma-Ray Bursts and Potential Contribution to Diffuse Flux at IceCube”, The Astrophysical Journal, 890(1) 83. (SCIE) (IF: 5.521; SCI ranking: 20.3%)

  • [28]     Tobias Fischer*, Gang Guo, Alan A. Dzhioev, Gabriel Martínez-Pinedo, Meng-Ru Wu, Andreas Lohs, Yong-Zhong Qian, 2020, “Neutrino signal from proto-neutron star evolution: Effects of opacities from charged-current–neutrino interactions and inverse neutron decay”, Physical Review C, 101(2). (SCIE) (IF: 3.199; SCI ranking: 31.6%)

  • [29]     Projjwal Banerjee*, Meng-Ru Wu, Zhen Yuan, 2020, “Neutron Star Mergers as the Main Source of r-process: Natal Kicks and Inside-out Evolution to the Rescue”, The Astrophysical Journal Letters, 902(2) L34. (SCIE) (IF: 8.811; SCI ranking: 11.6%)

  • [30]     Gang Guo*, Yue-Lin Sming Tsai, Meng-Ru Wu, 2020, “Probing cosmic-ray accelerated light dark matter with IceCube”, Journal of Cosmology and Astroparticle Physics, 2020(10) 049-049. (SCIE) (IF: 7.28; SCI ranking: 14.5%,17.2%)

  • [31]     Zewei Xiong*, Meng-Ru Wu, Yong-Zhong Qian, 2019, “Active–Sterile Neutrino Oscillations in Neutrino-driven Winds: Implications for Nucleosynthesis”, The Astrophysical Journal, 880(2) 81. (SCIE) (IF: 5.521; SCI ranking: 20.3%)

  • [32]     Meng-Ru Wu*, Projjwal Banerjee, Brian D. Metzger, Gabriel Martínez-Pinedo, Tsuguo Aramaki, Eric Burns, Charles J. Hailey, Jennifer Barnes, Georgia Karagiorgi, 2019, “Finding the Remnants of the Milky Way's Last Neutron Star Mergers”, The Astrophysical Journal, 880(1) 23. (SCIE) (IF: 5.521; SCI ranking: 20.3%)

  • [33]     Meng-Ru Wu*, J. Barnes, G. Martínez-Pinedo, B. D. Metzger, 2019, “Fingerprints of Heavy-Element Nucleosynthesis in the Late-Time Lightcurves of Kilonovae”, Physical Review Letters, 122(6) 062701. (SCIE) (IF: 9.185; SCI ranking: 9.3%)

  • [34]     John Ryan Westernacher-Schneider, Evan O’Connor, Erin O’Sullivan, Irene Tamborra, Meng-Ru Wu, Sean M. Couch, Felix Malmenbeck, 2019, “Multimessenger asteroseismology of core-collapse supernovae”, Physical Review D, 100(12). (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [35]     Allan Sung, Huitzu Tu*, Meng-Ru Wu*, 2019, “New constraint from supernova explosions on light particles beyond the Standard Model”, Physical Review D, 99(12). (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [36]     Anna M. Suliga, Irene Tamborra*, Meng-Ru Wu, 2019, “Tau lepton asymmetry by sterile neutrino emission—moving beyond one-zone supernova models”, Journal of Cosmology and Astroparticle Physics, 2019(12) 019-019. (SCIE) (IF: 7.28; SCI ranking: 14.5%,17.2%)

  • [37]     Tobias Fischer*, Niels-Uwe F. Bastian, Meng-Ru Wu, Petr Baklanov, Elena Sorokina, Sergei Blinnikov, Stefan Typel, Thomas Klähn, David B. Blaschke, 2018, “Quark deconfinement as a supernova explosion engine for massive blue supergiant stars”, Nature Astronomy, 2(12) 980-986. (SCIE) (IF: 15.647; SCI ranking: 7.2%)

  • [38]     Meng-Ru Wu*, Irene Tamborra, Oliver Just, Hans-Thomas Janka, 2018, “Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants”, Physical Review D, 96(12), 123015. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [39]     S. Rosswog*, U. Feindt, O. Korobkin, M.-R. Wu, J. Sollerman, A. Goobar, G. Martinez-Pinedo, 2017, “Detectability of compact binary merger macronovae”, Classical and Quantum Gravity, 34(10), 104001. (SCIE) (IF: 3.853; SCI ranking: 34.8%,32.6%,34.5%,52.6%)

  • [40]     M. Heine* et. al. R3B collaboration, 2017, “Determination of the neutron-capture rate of C17 for r -process nucleosynthesis”, Physical Review C, 95(1), 014613. (SCIE) (IF: 3.199; SCI ranking: 31.6%)

  • [41]     Meng-Ru Wu*, Irene Tamborra, 2017, “Fast neutrino conversions: Ubiquitous in compact binary merger remnants”, Physical Review D, 95(10), 103007. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [42]     Maik Frensel*, Meng-Ru Wu, Cristina Volpe, Albino Perego, 2017, “Neutrino flavor evolution in binary neutron star merger remnants”, Physical Review D, 95(2), 023011. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [43]     R. Knöbel et. al.,, 2016, “First direct mass measurements of stored neutron-rich 129,130,131 Cd isotopes with FRS-ESR”, Physics Letters B, 754, 288-293. (SCIE) (IF: 4.95; SCI ranking: 27.5%,21.1%,31%)

  • [44]     Meng-Ru Wu*, Rodrigo Fernández, Gabriel Martínez-Pinedo, Brian D. Metzger, 2016, “Production of the entire range ofr-process nuclides by black hole accretion disc outflows from neutron star mergers”, Monthly Notices of the Royal Astronomical Society, 463(3), 2323-2334. (SCIE) (IF: 5.235; SCI ranking: 24.6%)

  • [45]     Jennifer Barnes*, Daniel Kasen, Meng-Ru Wu, Gabriel Martínez-Pinedo, 2016, “RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES”, The Astrophysical Journal, 829(2), 110. (SCIE) (IF: 5.521; SCI ranking: 20.3%)

  • [46]     Meng-Ru Wu*, Yong-Zhong Qian, Gabriel Martínez-Pinedo, Tobias Fischer, Lutz Huther, 2015, “Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an18M⊙supernova model”, Physical Review D, 91(6), 065016. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [47]     Joel de Jesús Mendoza-Temis, Meng-Ru Wu, Karlheinz Langanke, Gabriel Martínez-Pinedo*, Andreas Bauswein, Hans-Thomas Janka, 2015, “Nuclear robustness of therprocess in neutron-star mergers”, Physical Review C, 92(5), 055805. (SCIE) (IF: 3.199; SCI ranking: 31.6%)

  • [48]     Meng-Ru Wu*, Huaiyu Duan, Yong-Zhong Qian, 2015, “Physics of neutrino flavor transformation through matter–neutrino resonances”, Physics Letters B, 752, 89-94. (SCIE) (IF: 4.95; SCI ranking: 27.5%,21.1%,31%)

  • [49]     Meng-Ru Wu*, Tobias Fischer, Lutz Huther, Gabriel Martínez-Pinedo, Yong-Zhong Qian, 2014, “Impact of active-sterile neutrino mixing on supernova explosion and nucleosynthesis”, Physical Review D, 89(6), 061303. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [50]     John F. Cherry*, Meng-Ru Wu, J. Carlson, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, 2012, “Neutrino luminosity and matter-induced modification of collective neutrino flavor oscillations in supernovae”, Physical Review D, 85(12), 125010. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [51]     John F. Cherry*, Meng-Ru Wu, J. Carlson, Huaiyu Duan, George M. Fuller, Yong-Zhong Qian, 2011, “Density fluctuation effects on collective neutrino oscillations in O-Ne-Mg core-collapse supernovae”, Physical Review D, 84(10), 105034. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

  • [52]     Meng-Ru Wu, Yong-Zhong Qian*, 2011, “Resonances driven by a neutrino gyroscope and collective neutrino oscillations in supernovae”, Physical Review D, 84(4), 045009. (SCIE) (IF: 5.407; SCI ranking: 23.2%,24.1%)

學術會議(研討會)論文

  • [1]     Friedrich-Karl Thielemann*, Benjamin Wehmeyer, Meng-Ru Wu, 2019, “r-Process Sites, their Ejecta Composition, and their Imprint in Galactic Chemical Evolution”, 1668 012044 pages, paper presented at Journal of Physics: Conference Series, Frankfurt, Germany: Nuclear Physics in Astrophysics IX, 2019-09-15.

  • [2]     Marketin T., Sieverding A., Wu M.-R., Paar N., Martínez-Pinedo G., 2016, “Microscopic Calculations of -decay Rates for r-process”, 48(3) 641 pages, paper presented at Zakopane Conference on Nuclear Physics : Extremes of the Nuclear Landscape, Kraków, Poland: Institute of Nuclear Physics PAN, 2016-08-28 ~ 2016-09-04.

  • [3]     Giuliani S.A., Martínez-Pinedo G., Robledo L.M., Wu M.-R., 2016, “r-process Calculations with a Microscopic Description of the Fission Process”, 48(3) 299 pages, paper presented at Zakopane Conference on Nuclear Physics : Extremes of the Nuclear Landscape, Kraków, Poland: Institute of Nuclear Physics PAN, 2016-08-28 ~ 2016-09-04.

  • [4]     Marketin Tomislav, Sieverding André, Wu Meng-Ru, Paar Nils, Martínez-Pinedo Gabriel, 2016, “Beta-Delayed Neutron Emission in Neutron-Rich Nuclei”, 020605 pages, paper presented at 14th International Symposium on Nuclei in the Cosmos (NIC2016), Niigata, Japan: NAOJ, 2016-06-19 ~ 2016-06-24.

  • [5]     Mendoza-Temis J J, Wu M R, Martínez-Pinedo G, Langanke K, Bauswein A, Janka H-T, Frank A, 2016, “On the robustness of the r-process in neutron-star mergers against variations of nuclear masses”, 730 012018 pages, paper presented at 39th Symposium on Nuclear Physics (Cocoyoc 2016), Cocoyoc, Mexico: Universidad Nacional Autónoma de México, 2016-01-05 ~ 2016-01-08.

  • [6]     Wu Meng-Ru, Martínez-Pinedo Gabriel, Qian Yong-Zhong, 2015, “Linking neutrino oscillations to the nucleosynthesis of elements”, 109 06005 pages, paper presented at 13th International Symposium on Origin of Matter and Evolution of the Galaxies (OMEG2015), Beijing, China: China Institute of Atomic Energy, 2015-06-24 ~ 2015-06-27.

專書內之論文

  • [1]     Martínez-Pinedo Gabriel, Fischer Tobias, Langanke Karlheinz, Lohs Andreas, Sieverding Andre, Wu Meng-Ru, 2017, “Neutrinos and Their Impact on Core-Collapse Supernova Nucleosynthesis”, editor(s): Athem W. AlsabtiPaul Murdin, Handbook of Supernovae, pp. 1805-1841, Switzerland: Springer International Publishing AG.

發現與突破

  • [1]     西元年:2023
    研究人員(中):吳孟儒、林彥勳, 吳文華, 王子敬
    研究人員(英):MENG-RU, WU, Yen-Hsun Lin, Wen-Hua Wu, Henry Tsz-King Wong
    研究成果名稱(中):搜尋宇宙暗物質的嶄新實驗訊號
    研究成果名稱(英):New Experimental Signatures Added to the Arsenal for Dark Matter Searches
    簡要記述(中):暗物質現有的偵測方式,為其與原子核或電子的彈性散射。此方法的可觀察能量極低,且缺乏其他訊息互補。本院物理所粒子物理研究團隊提出新構想,在超新星爆炸後,以暗物質與探測器交互作用所產生的「餘暉(afterglow)」 作為搜尋暗物質的新實驗訊號。超新星爆炸中釋出的巨量的微中子,可將其動能轉移到宇宙中的暗物質。這些「加速暗物質(Boosted Dark Matter, BDM)」到達地球後,可在大型探測器中產生獨特的訊號。此外,BDM事件之飛行時間分佈不僅異於超新星初始微中子及電磁波訊號,對該事件之觀測更可作為暗物質確鑿之證據,進而對其質量與交互作用散射截面積提供了重要且有力的線索。此研究使用日本超級神岡實驗(Super-Kamiokande)的數據,分析超新星SN1987a事件可能產生的BDM,對質量在百萬電子伏特以下暗物質的散射截面積得到嶄新的限制。相較於之前透過宇宙射線產生的BDM,此方法將散射截面積的限制範圍下推了多個數量級。此外,未來實驗將能觀測由銀河中心超新星產生的BDM,其靈敏度範圍更可進一步拓展搜尋暗物質的參數空間。
    簡要記述(英):Researchers from the Institute of Physics identified a novel concept of using “afterglows” of supernova explosions due to Dark Matter (DM) interactions in detectors as new experimental signatures to Direct DM searches. The conventional approach of DM detection via its elastic scattering with the nucleus is restricted by small observable energies and the lack of complementary information. Supernova neutrinos (SNν) can transfer their kinetic energy to the DM in the cosmos. Upon arrival on Earth, these boosted-DM (BDM) would produce distinctive observables in large detectors. In addition, the Time-of-Flight distribution of the BDM eventsrelative to the initial SNs neutrino burst are smoking-gun signatures for DM. A positive detection of SNνBDM can provide powerful constraints to DM masses and interaction cross-sections. Limits derived by this analysis on SN1987a with data from the Super-Kamiokandeexperiment exceed the current bounds from BDM due to cosmic-rays by several orders of magnitude. The sensitivity reach of future detections of BDM due to SNν from the Galactic Center is projected, indicating potentials to probe a vast parameter space not previously accessible in DM searches.
    主要相關著作:
    Yen-Hsun Lin*, Wen-Hua Wu, Meng-Ru Wu, Henry Tsz-King Wong, 2023, “Searching for Afterglow: Light Dark Matter Boosted by Supernova Neutrinos”, Physical Review Letters, 130(11), 111002. (SCIE) (IF: 9.185; SCI ranking: 9.3%)


  • [2]     西元年:2020
    研究人員(中):吳孟儒、Projjwal Banerjee, Zhen Yuan
    研究人員(英):MENG-RU, WU, Projjwal Banerjee, Zhen Yuan
    研究成果名稱(中):雙中子星合併為銀河系主要的快中子過程元素來源
    研究成果名稱(英):Neutron Star Mergers as the Main Source of R-process in Milky Way
    簡要記述(中):雙中子星合併為目前最可能產生快中子補獲過程形成重元素的天文環境. 然而在太陽系附近觀測到的恆星表面豐度演化於近年來被用來指出可能需要有其他來源或者是需要非標準的雙中子星合併延遲分佈函數(delay-time distribution function). 在此工作內我們首次考慮雙中子星系統誕生時所獲得的系統速度(kick velocity)與銀河系的演化對豐度演化的影響. 我們發現若同時考慮這兩種效應, 可以解決前述需要有其他來源或者是需要非標準的雙中子星合併延遲分佈函數的問題.
    簡要記述(英):Binary neutron star mergers (BNSMs) are currently the most promising source of r-process thanks to the detection of GW170817. However, the decreasing trend of [Eu/Fe] versus [Fe/H] of disk stars for [Fe/H] >~ -1 in the solar neighborhood is inconsistent with the flat trend expected from BNSMs with a standard delay time distribution (DTD) proportional to t^-1. This has led to the suggestion that either additional sources or modification to the DTD of BNSMs is required to match the observations. In this work, we show that when key inputs from simulations of the inside-out disk evolution are combined with natal kicks, BNSMs can naturally reproduce the observed decreasing trend of [Eu/Fe] with [Fe/H] in the solar neighborhood without the need for modification to the DTD or additional r-process sources.
    主要相關著作:
    Projjwal Banerjee*, Meng-Ru Wu, Zhen Yuan, 2020, “Neutron Star Mergers as the Main Source of r-process: Natal Kicks and Inside-out Evolution to the Rescue”, The Astrophysical Journal Letters, 902(2) L34. (SCIE) (IF: 8.811; SCI ranking: 11.6%)


  • [3]     西元年:2019
    研究人員(中):吳孟儒、Jennifer Barnes, Gabriel Martinez-Pinedo, Brian D. Metzger
    研究人員(英):MENG-RU, WU, Jennifer Barnes, Gabriel Martinez-Pinedo, Brian D. Metzger
    研究成果名稱(中):千倍新星晚期觀測將能提供自然界中最重元素的合成證據
    研究成果名稱(英):Late-time kilonova observations can shed light on the synthesis of nature's heaviest nuclei
    簡要記述(中):中央研究院物理研究所助研究員吳孟儒與合作者在一項理論研究中指出,透過對於雙中子星合併產生的電磁輻射 – 千倍新星 – 在合併後數個月的精精準量測,科學家將有機會能夠找到自然界中最重的元素如何形成的證據。 此研究成果發表於2019年2月的《物理評論快報》期刊。
    簡要記述(英):In a theoretical research work led by Dr. Meng-Ru Wu in the Institute of Physics, he and his collaborators show that a precise measurement of light emitted from the merger of two neutron stars – the kilonova – at months after the merger, can provide the elusive definitive proof of how the nature's heaviest nuclei are made in our universe. The work has been published in Physical Review Letters in February, 2019.
    主要相關著作:
    Meng-Ru Wu*, J. Barnes, G. Martínez-Pinedo, B. D. Metzger, 2019, “Fingerprints of Heavy-Element Nucleosynthesis in the Late-Time Lightcurves of Kilonovae”, Physical Review Letters, 122(6) 062701. (SCIE) (IF: 9.185; SCI ranking: 9.3%)


  • [4]     西元年:2018
    研究人員(中):吳孟儒、Tobias Fischer, Niels-Uwe F. Bastian, Petr Baklanov, Elena Sorokina, Sergei Blinnikov, Stefan Typel, Thomas Klaehn, David Blaschke
    研究人員(英):MENG-RU, WU, Tobias Fischer, Niels-Uwe F. Bastian, Petr Baklanov, Elena Sorokina, Sergei Blinnikov, Stefan Typel, Thomas Klaehn, David Blaschke
    研究成果名稱(中):強子夸克相變引發之超新星爆炸
    研究成果名稱(英):Supernova explosion triggered by quark-hadron phase transition
    簡要記述(中):在一項與多國多位研究人員共同進行的理論研究中指出, 在超越原子核內部物質密度狀態下, 可能發生的強子態轉換至夸克態的一階相變, 可以解釋天文上觀測到, 尚未解決的兩個問題 - 極大質量恆星的超新星爆炸及極重中子星的生成(詳見英文記述).
    簡要記述(英):In a research work done together with physicists and astrophysicists from Germany, Poland, Russia, we show that a possible first-order transition from the hadronic state to the quark state at super-nuclear saturation density can help explain two astronomical puzzles:(1) How do very massive stars die as supernovae? (2) How were heavy neutron stars born in nature?

    In the typical theory of core-collapse supernova, the explosion is triggered by the so-called “neutrino-driven” mechanism, within which the neutrinos are responsible for transferring the energy from the central remnant to the stalled shock in order to explode the entire star. However, over the past decades, researchers found that for very massive stars that weight about 50 solar mass, such an energy transfer mechanism is not powerful enough to deliver a successful explosion. Nevertheless, supernova explosions associated with these massive stars were in fact seen by telescope observations, which still puzzles astrophysicists. In this novel work, it was found that, deeply inside the proto-neutron star formed during the gravitational core-collapse, if a first-order phase transition from the hadronic phase to the quark phase occurs at a density that is about 2 times larger than the nuclear saturation density, a second collapse can happen within the proto-neutron star and generates a powerful shock that is strong enough to explode the whole star as heavy as 50 solar mass initially. Moreover, the remnant left behind from such an explosion will be a “neutron star” with a quark core that weights about 2 times of the solar mass. This naturally provides a formation mechanism for the observed heaviest neutron star in the Universe.

    Such strong explosions can also yield very bright transients on the sky, with the brightness ranging between the normal supernovae and the super-luminous supernovae, thereby offering a potential connection between massive stars and super-luminous supernovae. In addition, this work predicts that if such an explosion happens in our Milky Way galaxy, the existing and future multi-kiloton neutrino detectors will be able to record a unique “milli-second” neutrino burst to confirm this scenario.
    主要相關著作:
    Tobias Fischer*, Niels-Uwe F. Bastian, Meng-Ru Wu, Petr Baklanov, Elena Sorokina, Sergei Blinnikov, Stefan Typel, Thomas Klähn, David B. Blaschke, 2018, “Quark deconfinement as a supernova explosion engine for massive blue supergiant stars”, Nature Astronomy, 2(12) 980-986. (SCIE) (IF: 15.647; SCI ranking: 7.2%)


個人資料維護 | 著作目錄維護同步更新 | 最後更新日期 : 2024-03-25
2
Back To Top