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ABSTRACT: Detrended fluctuation analysis has been proved to be a useful method in the 

analysis of nonstationary time series data. Since the changes in the stock market indices are 

nonstationary, hence DFA method is more suitable than R/S method. In this paper we study 

National Stock Exchange (NSE) index for fractal behavior and calculated scaling exponents for 

different time intervals.  

  

1. INTRODUCTION 

   

The recent body of work done by physicists and others have produced convincing 

evidences that the standard model of Finance is not fully capable of describing real markets, and 

hence new ideas and models are called for, some of which have come straight from Physics [1]. 

Many problems in economics and finance have recently started to attract the interest of statistical 

physicists. Fundamental problems are whether long-range power-law correlations exist in 

economic systems and the explanation of economic cycles, indeed, traditional methods (like 

spectral methods) have corroborated that there is evidence that the Brownian motion idea is only 

approximately right [2,3,4]. Different approaches have been envisaged to measure the correla-

tions and to analyze them. N.Vandewalle and M .Ausloos performed a Detrended Fluctuation 

Analysis (DFA) of the USD/DEM ratio [5] and they demonstrated the existence of successive of 

economic activity having different statistical behaviors. Ashok Razdan [6] performed the R/S 

analysis of Bombay Stock Index and showed that BSE index time series is monofractal and can 

be represented by a fractional Brownian motion. 

    In this paper we perform a detrended fluctuation analysis of NIFTY values at different 

scales eg. Daily, Weekly, Monthly, Quarterly and Six monthly data and obtained the scaling 

exponents for the respective data set. We also perform the same study for DAX and DJI index 

time series data containing daily closing values. 

            The structure of the paper is as follows. In Sec. 2 we provide the mathematical 

background for calculating the detrended fluctuation function and discuss its physical meaning. 

In section 3, we apply DFA method to the time series of NIFTY value at different time scales. 
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We address the question of quantifying the information in DFA profile for possible prediction. 

Section 4 is related with the source of the data used. A conclusion will be drawn in sec.5. 

 

 

2. DETRENDED FLUCTUATION ANALYSIS (DFA) 
 

    A simplified and general definition characterizes a time series as stationary if its mean, 

standard deviation and higher moments, as well as the correlation functions, are invariant under 

time translation. Signals that do not obey these conditions are non stationary. Many methods 

have been proposed as a tool for analysis of time series data. Hurst [7] proposed a scaling 

exponent for the water level of Nile River. However this method is applicable to stationery data 

only. Such an approach gives misleading result when the mean and variance of the time series 

varies with time i.e. the data is non stationery. To overcome this complication, Peng et al [8] 

introduced a modified root mean square analysis of a random walk, termed detrended fluctuation 

analysis (DFA), which may be applied to the analysis of non stationery data. Among the 

advantages of DFA over conventional methods are that it permits the detection of intrinsic self-

similarity embedded in a seemingly non stationary time series, and also avoids the spurious 

detection of apparent self-similarity, which may be an artifact of extrinsic trends. This method 

has been successfully applied to a wide range of time series in recent years ranging from sunspot 

radiation to heart beat rate pattern, genetic pattern to stock market and so on.                                  

  Although the DFA algorithm works well for certain types of non stationary time series, it 

is not designed to handle all possible non stationarities in real-world data. Method for 

quantifying the correlation property in non stationary time series is based on the computation of 

a scaling exponent d by means of a modified root mean square analysis of a random walk.  

 

2.1. CALCULATION OF DETRENDED FLUCTUATION FUNCTION 

 

To compute d from a time-series x(i) [i=1,..., N], the time series is first integrated:  

  

                                               
 

Where M is the average value of the series x(i), and k ranges between 1 and N.  

Next, we detrend the integrated time series, y(k), by subtracting the local trend, yn(k), in each 

box. The root-mean-square fluctuation of this integrated and detrended time series is calculated 

by  

 

               
 

         This computation is repeated over all time scales (box sizes) to characterize the relationship 

between F (n), the average fluctuation, and the box size, n. Typically, F (n) will increase with 

box size. A linear relationship on a log-log plot indicates the presence of power law (fractal) 

scaling. Under such conditions, the fluctuations can be characterized by a scaling exponent d, the 

slope of the line relating log F (n) to log n.  
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         F (n) is computed for all time-scales n. Typically, F(n) increases with n, the "box-size". If 

log F(n) increases linearly with log n, then the slope of the line relating F(n) and n in a log-log 

scale gives the scaling exponent d.  

 

Scaling exponent d is related to the behavior of the data as follows:  

                                                                

If   d  =  0.5,  the time-series x(i) is uncorrelated (white noise).  

If   d  =  1.0,  the correlation of the time-series is the same of 1/f noise.  

If   d  = 1.5,   x (i) behaves like Brown noise (random walk) Brownian motion 

 

3. DATA ANALYSIS                  
                                     The DFA analysis was performed for the data sets and the results 

obtained are as follows: 
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          Fig. 1[A]   NSE INDEX DAILY CLOSING VALUES FROM 12.08.2002 TO 25.08.2010 
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Fig. 1[B] DFA PROFILE FOR NSE INDEX DAILY CLOSING VALUES FROM 12.08.2002 TO 25.8.2010 
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Monthly Data
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Fig. 1[C] DFA PROFILE FOR NSE INDEX MONTHLY CLOSING VALUES FROM 12.08.2002 TO 

25.8.2010 
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Fig. 1[D] DFA PROFILE FOR NSE INDEX QUARTERLY CLOSING VALUES FROM 12.08.2002 TO 

25.8.2010 
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                       FIG 2[A] DAX DAILY CLOSING VALUES FROM 26-11-1990 to 25-08-2010 
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FIG 2[B] DFA PROFILE FOR DAX CLOSING VALUES FROM 26-11-1990 to 25-08-2010 
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                    FIG 3[A] DJI CLOSING VALUES FROM 03- 01-1950 to 25-08-2010 
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FIG 3[B] DFA PROFILE FOR DOW CLOSING VALUES FROM 03- 01- 1950 to 25-08-2010 

 

4. SOURCE OF DATA SETS  

 

                    We have considered the daily closing value of indices till 26th sep. 2010.  Dataset of 

NIFTY contains 2015 data points where as DAX data contains 4991 and DJI data contains 5262 

data points. The week ends and holidays are not considered. The data were collected from the 

website of yahoo finance [9].  

 

5. RESULT AND CONCLUSION 

 

                       By using DFA analysis, we calculate the fractal dimension of NSE index for daily, 

monthly, and quarterly closing values. The variation of DFA function values of NIFTY index 

with n shows that data follows simple scaling behavior. Almost same result is obtained for daily 

closing values of DAX and DJI indices. Since the value of slope is found to be near to 1.5, for all 

types of data sets with small variance, the market behavior shows nearly classical Brownian 

random walk. But it is important to note that we have used closing values of Indices only. It will 

be interesting to look for mono/multifractal features in short term (single day data, but intra-day 

behavior).  
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