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We analyze cross-correlation between return fluctuations of different stocks by 
using random matrix theory (RMT). We test the statistics of eigenvalues of 
cross-correlation (C) between stocks of Tehran price index (TEPIX) as an 
emerging market in the period of 1 April 2005 to 1 April 2010 and compare 
these with a mature market (US market). According to the "null hypothesis" ─ a 
random correlation matrix constructed from mutually uncorrelated times 
series─ the deviation from the Gaussian orthogonal ensemble of RTM is a good 
criterion. We find that a majority of the eigenvalues of C fall within the 
bulk(RMT bounds between λ- and λ+) for the eigenvalues of the random 
correlation matrices. Further, we find that the distribution of eigenvector 
components for the eigenvectors corresponding to the largest deviating 
eigenvalues, display systematic deviations from the RMT prediction. We 
analyze the components of the deviating eigenvectors and find that the largest 
eigenvalue corresponds to an influence common to all stocks. Our analysis of 
the remaining deviating eigenvectors shows distinct sectors, whose identities 
corresponds to the structure of the Iran business environment. Market of Iran is 
in the shadow of government.  
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I. INTRODUCTION 

Quantifying cross-correlation between different assets is a topic of interest for 
understanding the economy as a complex system and for practical reasons such 
an asset allocation and portfolio-risk optimization [1-4]. Here, we analyze cross-
correlation between stocks by applying random matrix approach, developed in 
the context of complex quantum systems where same as stock markets, the 
precise nature of the interactions between subunits are not known.  

In order to do this, we first calculate the price change of stocks i=1,…,.N over a 
time scale Δt  

𝐺𝐺𝑖𝑖(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑆𝑆𝑖𝑖(𝑡𝑡) − 𝑙𝑙𝑙𝑙𝑆𝑆𝑖𝑖(𝑡𝑡 − 𝛥𝛥𝑡𝑡) ,                      ( 1) 

Where Si(t) denotes the price of stock i at time t. We define a normalized return 
in order to standardize the different stock volatilities. We normalize Gi with 
respect to its standard deviation σi As follows[5]: 

𝑔𝑔𝑖𝑖 =
𝐺𝐺𝑖𝑖(𝑡𝑡)−< 𝐺𝐺𝑖𝑖 >

𝜎𝜎𝑖𝑖
                                        (2)      

where 𝜎𝜎𝑖𝑖 = �< 𝐺𝐺𝑖𝑖2 > −< 𝐺𝐺𝑖𝑖 >2 , and <…> denotes a time average over the 

period studied. We then compute the equal-time cross-correlation matrix C with 
elements 

𝐶𝐶𝑖𝑖𝑖𝑖 =< 𝑔𝑔𝑖𝑖(𝑡𝑡)𝑔𝑔𝑖𝑖 (𝑡𝑡) >                                  (3) 

The elements of C are limited to the domain [-1,1], where𝐶𝐶𝑖𝑖𝑖𝑖 =1 defines perfect 
correlation, 𝐶𝐶𝑖𝑖𝑖𝑖 =-1 corresponding to perfect anti-correlation and 𝐶𝐶𝑖𝑖𝑖𝑖 =0 
corresponding to uncorrelated pairs of stocks. 

This is difficult to analyze the significance and meaning of the empirical cross-
correlation coefficients (𝐶𝐶𝑖𝑖𝑖𝑖 ),because of non-stationary cross-correlation as a 
result of market conditions and "measurement noise" as a result of finite length 
of time series available for estimating the 𝐶𝐶𝑖𝑖𝑖𝑖   . 

These problems induce us using a way to identify which stocks remained 
correlated (on the average) in the time period studied? To answer this question, 
we test the statistics of C against the null hypothesis of a random correlation 
matrix constructed from mutually uncorrelated time series. If the properties of C 
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conform to those of a random correlation matrix, then it follows that the 
contents of the C are random and deviations of the properties of C from those of 
a random correlation matrix convey information about genuine correlations. 
Thus, our goal is separating the contents of C into two groups: (a) the part of C 
that conforms to the properties of RMT ("noise") and (b) the part that deviates 
("information") [5,19] .  For mature markets have been done many researches in 
this area, and have found good agreement with this hypothesis [5,19]. In this 
paper we are trying to calculate the RMT properties for Iran stock market and 
so, we will be able to comparing this market with mature markets [22] . 

This paper is organized as follows: in Section II we review RMT and discuss 
about it. Section III contains a brief description of the data analyzed. Section IV 
discusses the statistics of cross-correlation coefficients and comparing this with 
mature markets. Section V discusses the eigenvalue distribution of C and 
compares with RMT results. Section VI contains a detailed analysis of the 
contents of eigenvectors that deviate from RMT. Finally, Section VII contains 
some conclusion states. 

II. Random Matrix Theory 

RMT was developed in the context of nuclear physics by Wigner, Dyson, 
Mehta, and others in order to explain the statistics of energy levels of complex 
quantum systems [6-10]. The success of random matrices lies in the universality 
regime of the eigenvalue statistics. There is compelling evidence that when the 
size of the matrix is very large then the eigenvalue distribution tends, in a 
certain sense, towards a limiting distribution. This only depends on the 
symmetry properties of the matrix and is independent of the initial probability 
law imposed on the matrix entries. 
 
Some researches [11, 12] applying RMT methods to analyze the properties of C 
show that the most of the eigenvalues of C agree with RMT predictions, 
suggesting a considerable degree of randomness in the measured cross-
correlations. It is also found that there are deviations from RMT predictions for 
the largest eigenvalues.  
We analyze the components of the deviating eigenvectors and find that the 
largest eigenvalue corresponds to an influence common to all stocks.  



4 
 

By using the inverse participation ratio, we analyze the eigenvectors of C and 
find large values at both edges of the eigenvalue spectrum — suggesting a 
“random band” matrix structure for C.   
 
 

III. DATA  ANALYZED 

We analyze "Rah Avard Novin" database, that covering all transactions of 
securities of Tehran Stock Exchange [13]. We extract from this database time 
series of prices of the 325 stocks of Tehran Stock Exchange, on the starting date 
April 1, 2005. We analyze daily change of this database over a period of 1291 
consecutive trading days in 2005-2010[14]. From this, we form L=1291 records 
of 1-day prices of N=325 Iran stocks for the 5-yr period 2005-2010. 

IV. STATISTICS OF CORRELATION COEFFICIENT 
 

We analyze the distribution 𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 ) of the elements {𝐶𝐶𝑖𝑖𝑖𝑖 ; i#j} of the cross-
correlation matrix C. We find this for 1-day returns from the database for the 5-
yr periods 2005-2010 [Fig. 1]. We find that 𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 ) has skewness and a positive 
mean value (<𝐶𝐶𝑖𝑖𝑖𝑖 > = 0.0104), implying that positively-correlated behavior is 
more prevalent than negatively-correlated (anti-correlated) behavior. We 
contrast 𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 ) with a control —a correlation matrix R with elements 𝑅𝑅𝑖𝑖𝑖𝑖  
constructed from N = 325 mutually-uncorrelated time series, each of length L = 
1291, generated using the empirically found distribution of stock returns. Figure 
(1) shows that 𝑃𝑃(𝑅𝑅𝑖𝑖𝑖𝑖 ) is consistent with a Gaussian with zero mean. In addition, 
we see that the part of 𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 )  for 𝐶𝐶𝑖𝑖𝑖𝑖  < 0 (which corresponds to anti-
correlations) is within the Gaussian curve for the control, suggesting the 
possibility that the observed negative cross-correlations in C may be an effect of 
randomness [5]. The distribution shape is similar to the normal distribution and 
by comparing with Chinese and US stock markets [5,15], we find good 
agreement with findings of Chinese market that the correlation coefficients  
have normal distribution shape [15], but the US market does not have a normal 
behavior [5]. Both of the Chinese and Tehran stock markets are emerging 
markets. As an important note, TEPIX has a normal behavior same as Chinese 
market, but the mean value of cross-correlation of the stocks of the Tehran stock 
market is near to zero same as US market, and is smaller than Chinese market.  
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FIG. 1. 𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 )   For C calculated using 1-day returns of 325 stocks for the 
period 2005-2010 (dashed curve). The solid curve shows the distribution of 
correlation coefficients for the control 𝑃𝑃(𝑅𝑅𝑖𝑖𝑖𝑖 ) of Eq. (5), which is consistent 
with a Gaussian distribution with zero mean. 
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V. EIGENVALUE DISTRIBUTION OF THE 

CORRELATION MATRIX 
 

As stated above, we want to extract information from C. So, we compare the 
properties of C with those of a random cross-correlation matrix [16]. In the 
matrix notation, the correlation matrix can be expressed as 

𝐶𝐶 =
1
𝐿𝐿 𝐺𝐺 𝐺𝐺𝑇𝑇                                                (4) 

Where G is an N×L matrix with elements {git : i=1,…,N; t=1,…,;L} 

The spectral properties of C may be compared to those of a "random" Wishart 
correlation matrix. [5,17] 

𝑅𝑅 =
1
𝐿𝐿  𝐴𝐴 𝐴𝐴𝑇𝑇                                               (5) 

Where A is an N×L matrix containing N time series of L random elements with 
zero mean and unit variance, that are mutually uncorrelated. 

Statistical properties of random matrices such as R are known for many years in 
the physics literature [18] and have been applied to financial problems relatively 
recently [19]. 

In particular, the limiting property for the sample size N→∞ and sample length 
T→∞ , providing that 𝑄𝑄 = 𝑇𝑇

𝑁𝑁
 ≥ 1 is fixed, has been examined to show 

analytically that the distribution of eigenvalues λ of the random correlation 
matrix R is given by: 

𝑃𝑃𝑟𝑟𝑟𝑟  (λ) =
𝑄𝑄

2𝜋𝜋
�( λ+ − λ)( λ− − λ)

λ                   (6) 

for λ within the region λ- ≤ λ≤ λ+  , where λ- and λ+ are given by : 

𝜆𝜆± = 𝜎𝜎(1 +
1
𝑄𝑄 + 2�

1
𝑄𝑄  )                                             (7) 

Where σ is the standard deviation of the elements of G; (for G normalized this is 
equal to unity). 
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λ+  and λ- are the bounds of the theoretical eigenvalue distribution. Eigenvalues 
that are outside this region are said to deviate from Random Matrix Theory 
(RMT)[19]. First, we compare the eigenvalue distribution 𝑃𝑃(𝜆𝜆) of C with 
𝑃𝑃𝑟𝑟𝑟𝑟  (λ) [5]. Figure (2) show this comparison. We find the presence of a well-
defined '"bulk" of eigenvalues which fall within the bounds [λ- ,λ+]for 𝑃𝑃𝑟𝑟𝑟𝑟  (λ) 
and for a few largest and smallest eigenvalues, there is deviations.  Secondly, 
we contrast 𝑃𝑃(𝜆𝜆) with the RMT result 𝑃𝑃𝑟𝑟𝑟𝑟  (λ) for the random correlation matrix 
of Eq. (5) , constructed from N= 325 mutually uncorrelated time series, each of 
the same length L=1291.we find good agreement with Eq.(6)(Fig.3). By 
comparison , we find good agreement with efficient market finding[5] . 

 

 

 

 

 

FIG. 2.Eigenvalue distribution P(λ) for C constructed from the 1-day returns for  
the stocks. The solid curve shows the RMT result Prm(λ) of Eq.(6). We see 
several eigenvalues outside the RMT upper bound λ+ . 
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FIG. 3. Eigenvalue distribution for random correlation matrix, computed from 
N=325 computer-generated random uncorrelated time series with length 
L=1291 shows good agreement with the RMT findings.  
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VI. STATISTICS  OF  EIGENVECTORS 

 

A. Distribution of eigenvector components 

According to Fig (2), we can hope to see that these deviations should also be 
displayed in the statistics of the corresponding eigenvector components [16]. 
So, we analyze the distribution of eigenvector components. The distribution of 
the components of eigenvector uk of a random correlation matrix R should 
conform to a Gaussian distribution with mean zero and unit variance. 

We compare the distribution of eigenvector components of C with the Gaussian 
distribution (Fig.4).  As we can see in this Figure, the distribution of the 
eigenvector components begins from the first eigenvector as a quasi-normal  
plot to a non-normal curve at the last eigenvector and so, we can infer that, 
outside the bulk with increasing the eigenvalue, the normality behavior 
decreases.  We analyze the eigenvector components of the eigenvalues 
belonging to the bulk and find good agreement with RMT result that show 
normal behavior and then analyze the eigenvectors corresponding to the largest 
and smallest  eigenvalues and find good agreement with findings of Figure (4) 
too(Fig.5). We test the kurtosis of these eigenvectors by a Gaussian distribution 
that has a value 3 and find significant deviation from this distribution for some 
of the smallest and largest eigenvalues(Fig. (6)).Although, The eigenvector 
corresponding to the largest eigenvalue has kurtosis about 3 and skewness about 
zero, as same as the Gaussian distribution, this eigenvector has non-Gaussian 
behavior. 

 Finally, we infer that for eigenvalues smaller than λ- there is a quasi-Gaussian 
behavior with high kurtosis and low and negative skewness, but, with increasing 
eigenvalue and arrival in bulk region, we can see a Gaussian behavior and then 
with exiting from the bulk region, we see non Gaussian behavior with 
intermittent kurtosis and skewness. The trend of these findings is consistent 
with mature market findings [5].  
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FIG. 4.normal probability plot for four eigenvectors. As we can see with 
incresing eigenvalue,normal behavior decreases. 

 

 

FIG. 5. Four eigenvector components, that shows for bulk(λ50,λ200) there is 
Gaussian behavior but for eigenvalues larger than λ+ there is no Gaussian 
behavior. For eigenvectors corresponding to the smallest eigenvalues there is a 
quasi-Gaussian distribution. 
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FIG. 6. Kurtosis of eigenvectors plotted against eigenvalues , and shows that 
largest eigenvalue has one of the least kurtosis And the smallest eigenvalues , 
have maximum eigenvector kurtosis. The bulk has a uniform-shaped kurtosis 
around 3 that is consistent with Gaussian distribution. 
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FIG. 7.Skewness of eigenvectors plotted against eigenvalue and shows that for 
smallest eigenvector, there is a negative and small skewness and for  the largest 
eigenvalue, skewness is near to zero and for bulk there is a uniform-shaped 
skewness around zero that is consistent with Gaussian behavior.   

  

B. Interpretation of the largest eigenvalue and the corresponding 
eigenvector 

Since majority of the components, participate in the eigenvector corresponding 
to the largest eigenvalue, it can represent an influence that is common to whole 
market. Thus, the largest eigenvector quantifies the qualitative notion that 
certain newsbreaks (e.g., an interest rate increase) affect all stocks alike [4]. We 
investigate this notion by comparing the projection (scalar product) of the time 
series G(time series of returns) on the eigenvector U325[5], with a standard 
measure of Tehran stock market performance — the returns of TEPIX index. 
We calculate the projection G325(t) of the time series Gj(t) on the eigenvector 
u325, 

𝐺𝐺325 (𝑡𝑡) ≡�𝑢𝑢𝑖𝑖325
325

𝑖𝑖=1

  𝐺𝐺𝑖𝑖(𝑡𝑡)                                       (8)    

 
By definition, G325(t) shows the return of the portfolio defined by u325. We 
compare G325(t) with the returns of TEPIX index, and find large value of the 
correlation coefficient. Figure (8) shows G325(t), G200(t) ,G50(t) and G1(t)   
regressed against the returns of TEPIX index. Whenever the symmetry is high, 
we cannot see any good trend, but with increasing λ, we can see exiting from 
symmetry behavior and this means, there is information about our system and 
there is high correlation between components of u325 and market. We interpret 
the eigenvector u325 as quantifying market-wide influences on all stocks [20]. 
One way of statistically modeling an influence that is common to all stocks is to 
express the return Gi of stock i as 
Gi(t) = αi + βiM(t) + ϵi(t)                                    (9) 
where M(t) is an common term that is the same for all stocks, <ϵ (t)> = 0, αi and 
βi are stock-specific constants, and <M(t) ϵ (t)> = 0. The decomposition of Eq. 
(9) forms the basis of economic models, such as the Capital Asset Pricing 
Model and multi-factor models [4,5]. Since the components of the largest 
eigenvector (u325) quantify market-wide influence on its all stocks, we 
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approximate M (t) with the G325 (t). The parameters αi and βi can therefore be 
estimated by an ordinary least squares regression. 
Next, we remove the effect of u325 to each time series Gi(t), and  construct C 
from the residuals ϵi(t) of Eq. (9). Figure (9) shows the distribution 𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 )  . It 
has significantly smaller average value <Cij>, showing that a large degree of 
cross-correlations contained in C is the effect of the largest eigenvalue [5]. 
By comparing with efficient market, we can see, there is high correlation 
between these Gk(t) and TEPIX return for any eigenvalue, but in mature market, 
there is smaller correlation coefficients and for eigenvalue in the bulk there is 
no any linear relation[5]. For C in mature markets, decreasing trend after 
removal of market effect, in <Cij> is more than TEPIX's [5]. This may be 
because of importance of largest eigenvector and its components in mature 
markets that have more effects on the market but in TEPIX we see randomness 
in the majority of eigenvectors.  

 

 

FIG. 8. Figure (8) shows G325(t), G200(t) ,G50(t) and G1(t)   regressed against the 
returns of TEPIX index. Whenever the symmetry is high, we cannot see any 
good trend, but with increasing λ, we can see exiting from symmetry behavior 
and this means, there is information about our system and there is high 
correlation between components of u325 and market. 
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FIG.  9. 𝑃𝑃(𝐶𝐶𝑖𝑖𝑖𝑖 )   for stocks before and after removing the effect of market. <Cij> 
before removing is .0104 and after removing the effect is .0026. 

 

C.   Number of significant participants in an eigenvector: Inverse 
Participation Ratio 

After focusing on the largest eigenvalue which means market effect, we next 
focus on the remaining eigenvalues. Since proximity to the upper bound of bulk 

increases the effects of randomness, we use the notion of the inverse 
participation ratio (IPR) as the number of components that participate 
significantly in each eigenvector, which in turn reflects the degree of deviation 
from RMT result for the distribution of eigenvector components. The IPR of the 
eigenvector uk is defined as 

𝐼𝐼𝑘𝑘  ≡  ∑ (𝑢𝑢𝑙𝑙𝑘𝑘)4𝑁𝑁
𝑙𝑙=1                                                                            (10)   

where 𝑢𝑢𝑙𝑙𝑘𝑘 ,  l=1,…,325 are the components of eigenvector uk. The meaning of 𝐼𝐼𝑘𝑘  
can be illustrated by two limiting cases: (i) a vector with identical components 
𝑢𝑢𝑙𝑙𝑘𝑘≡ 1

√𝑁𝑁
 has 𝐼𝐼𝑘𝑘= 1

𝑁𝑁
, whereas (ii) a vector with one component 𝑢𝑢𝑙𝑙𝑘𝑘= 1 and the 

remainder zero has 𝐼𝐼𝑘𝑘=1. Thus, the IPR quantifies the reciprocal of the number 
of eigenvector components that contribute significantly [5]. 
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Figure 10(a) shows 𝐼𝐼𝑘𝑘  for a computer-generated matrix of uncorrelated time 
series. 

Figure 10(b) shows the IPR for C. This Figure shows us that for bulk region 
there is same behavior, but, on the edges of the eigenvalue spectrum of C we 
can see significant deviation from random control IPR. The largest eigenvalue 
has 1/𝐼𝐼𝑘𝑘  ≈ 113, showing that almost the majority of stocks participate in the 
largest eigenvector. For other deviating eigenvalues, there is different IPR 
depending on the number of significant eigenvector components.   
In addition, we also find that there are large 𝐼𝐼𝑘𝑘  values for eigenvectors 
corresponding to few of the eigenvalues smaller than λ−. The deviations at both 
edges of the eigenvalue spectrum are considerably larger than mean of random 
control IPR, which suggests that the vectors are localized [5]—i.e only a few 
stocks contribute to them [5]. The presence of vectors with large values of Ik 
also arises in the theory of Anderson localization [5,20]. Whenever we compare 
this Figure with US market, we see, in the mature markets there is more 
difference between IPR of the largest eigenvalue and the other eigenvalues [5]. 
but in emerging market such an south Korean market[20], same as TEPIX, we 
can find this difference is small. This means that there are a few significant 
components in the maximum eigenvector or randomness in the market 
eigenvector is high.    
 

 

FIG. 10 (a) shows 𝐼𝐼𝑘𝑘  for a computer-generated matrix of uncorrelated time 
series (b) shows the IPR for C. This Figure shows us that for bulk region there 
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is same behavior, but, on the edges of the eigenvalue spectrum of C we can see 
significant deviation from random control IPR. We find this figure same as the 
figure (6) that shows the kurtosis of eigenvector components. That is not strange 
case because of their formulas'.   

D. Interpretation of largest deviating eigenvectors : 

In order to avoid the effect of λ325 , and thus G325(t), on the returns of each stock 
G i(t) ,we perform the regression of Eq.(9) and compute the residuals. we then 
calculate the correlation matrix C using these residuals . Next, we compute the 
eigenvectors of C thus obtained, and analyze their significant participants [5]. 

We find that each of these deviating eigenvectors contains stocks belonging to 
similar or related industries as significant contributors. We find that these 
eigenvectors partition the set of all stocks into distinct groups [21],which 
contain stocks of firms in the oil industry(u325), mining sector and investment 
firms(u324),drug industry and mining sector(u323), agricultural 
sector(u322),agricultural and mining sectors(u321),agricultural and mining 
sectors(u320), agricultural and mining sectors(u319),car industry and agricultural 
sector(u318), banking firms and mining sector(u317) and mining sector and car 
industry(u316). 

It is interesting to know that majority of components of eigenvectors 
corresponding to the largest deviating eigenvalues are categorized in 
agricultural, mining sector and car industry or related businesses. It has good 
agreement with this fact that market of Iran has an agricultural and mineral base 
and the importance of the third major component are because of the government 
supports. 
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VII. Conclusion and Recommendations 

We analyzed cross-correlation between return fluctuations of different stocks by 
using random matrix theory (RMT). We tested the statistics of eigenvalues of 
cross-correlation (C) between stocks of Tehran price index (TEPIX) as an 
emerging market in the period of 1 April 2005 to 1 April 2010 and compare 
these with a mature market (US market)[5]. We found that a majority of the 
eigenvalues of C fall within the bulk (RMT bounds between λ- and λ+) for the 
eigenvalues of the random correlation matrices. Further, we found that the 
distribution of eigenvector components for the eigenvectors corresponding to 
the largest deviating eigenvalues, display systematic deviations from the RMT 
prediction. We analyzed the components of the deviating eigenvectors and 
found that the largest eigenvalue corresponds to an influence common to all 
stocks. Our analysis of the remaining deviating eigenvectors shows distinct 
sectors, whose identities corresponds to the structure of the market. Market of 
Iran is a government- based market. We compare some of these attributes with 
US, Chinese and Korean markets [15, 20] and found good agreement with 
Chinese and Korean markets but some crucial difference between US and Iran 
markets. For future researches, we propose to investigate more about these 
relationships from more views and for more countries. 
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