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Abstract 

This thesis construct an order-driven artificial stock market base on Daniels et al. 

(2003) model. We also use autoregressive conditional duration (ACD) model initiated 

by Engle and Russell (1998) to model duration or order size. We analyzed the 

transaction cost of ten securities, including stocks, Exchange-Traded Funds (ETFs) 

and Real Estate Investment Trusts (REITs), in Taiwan stock market and compared this 

result with the simulated cost of our models. We find that for those frequently traded 

securities, for example, TSMC (2330.TW) or China Steel (2002.TW), it is better not 

to incorporate ACD model of duration in the model, and for those not frequently 

traded securities, for example, President Chain Store (2912.TW) or Gallop No.1 Real 

Estate Investment Trust Fund (01008T.TW), it is better to incorporate ACD model of 

duration in the model. Our empirical estimates show that the liquidity costs of market 

order of these ten securities are generally smaller than 3%, and largely lied between 

-1% and 1%. We, however, find that simulation costs of market orders in our model, 

with a range from 0% to 10%, are generally larger than those of real data. One 

possible reason for this departure is that investors in stock markets generally do not 

place their orders blindly. They tend to wait for the appearance of opposite order size, 

and then place their orders. They also tend to split up a large order, and then reduce 

market impact. These behavior do not exist in our simulation. Regardless of these 

differences, our models may still be a simulation tool for transaction cost assessment 

when one would like to liquidate their asset in a short span of time. 
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1. Introduction 

1.1 Motivations 

The liquidity cost (also called ”transaction cost”) in this study means the cost 

paid by stock market participants when they buy or sell their securities in stock 

market. Definitely speaking, the “cost” is the difference between the trading value  

an investor observed and the trading value they actually done. Especially for 

institutional investors or those who have large amount of trading position, they 

usually have large impact on the deal prices, liquidity cost is the topics they cannot 

neglect. 

One of the objectives of the stock market is providing liquidity to securities 

holders and securities buyers, i.e. investors can buy those securities they would like to 

buy and securities holders can liquidate their securities in stock market. Nonetheless, 

various kinds of securities listing in the stock market, the trading activity between 

them differ from one another. Not all securities have good liquidity, some securities 

have a large trade volume, and some securities even do not have a trade at all in a 

trading day. Business cycle, rumors or news in financial market and order flow, these 

factors also affect the liquidity of a security from time to time. 

For a security holder, if there is no enough buy orders in stock market, he may 

not smoothly liquidate his holdings. If this situation happens, the difference between 

his holding value calculated by market price multiply by shares of holdings and the 

market value he actually get after liquidation may be large. For corporate investors, 

the purpose of investment is increasing return of idle cash before expenditure for 

business activity, if investment holdings cannot be liquidated well, they might 

liquidate their holdings with large discount in order to match the business activity 

cash demand, and arises the “liquidity risk” in risk management regime. For the 

buyers, if there are no sufficient sell orders in the stock market, they cannot estimate 

how much cost they should paid for the buying. 

“Financial tsunami” which began in mid-2007 showed that the poor liquidity 

resulted in suddenly and severely liquidity risk of financial institutes. Therefore, the 

liquidity of financial institution became an important topic of financial supervision 

after global financial crisis. Basel Committee on Banking Supervision（2009）of Bank 

for International Settlements has issued two regulatory standards on liquidity risk of 

banks on December, 2009. One of which
1
 is “Liquidity Coverage Ratio”： 

                                                 
1
 The other is “Net Stable Funding Ratio”. 
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This ratio aims to ensure that the assets of a bank can liquidate to meet its 

liquidity needs for a 30-day time horizon under severe liquidity stress scenario. In this 

regulatory standard, “high quality liquid assets” have fundamental characteristics, for 

example low credit and market risk, easy to valuation, etc., and market characteristics, 

including active and sizable market, i.e. a large number of market participants and a 

high trading volume, and good market breadth (price impact per unit of liquidity), 

market depth (units of the asset can be traded for a given price impact). 

In recent years, the techniques of generating“trading strategies”or“buy/ sell 

signals”from analyzing historical market time series by using various computer 

software or artificial intelligence gradually become popular among investors. But 

these techniques always neglect the trading amount and market liquidity, i.e. they 

always do not take in to account the possibilities of extra transaction cost paid by 

investors which comes from poor liquidity of financial market. 

In order to lower the transaction cost when buying or selling securities in stock 

market, the assessment of liquidity of a security is important in real situations of 

security trading, risk management and testing of a trading strategy. For financial 

institutions, how to evaluate the liquidity of assets in order to meet the requirement of 

new financial supervision standards is also an important topic. But stock market is a 

complex system, historical information might be only a outcome of many possibilities. 

We might fall into the fallacy of “naïve empiricism” if we only analyze liquidity from 

historical data. Therefore, this study build three simple order-driven agent-based 

artificial stock market models, and hope in the future we can analyze the investor’s 

transaction cost under different scenario by using these agent-based models. 

1.2 Research objectives 

The objectives of this study are as follows: first, build order-driven agent-based 

stock market models which are tailored to the matching rule employed by Taiwan 

Stock Exchange (TWSE). Second, based on our models, whether or not an investor 

can estimate the transaction cost when he want to liquidate a given amount of stock. 

From a market participant’s point of view, we only try to estimate transaction 

cost under a given matching rule (call auction) in this study. We do not compare 

between different matching rules, for example, call auction and continuous auction, 

we also do not conclude which matching rule is better. Additionally, there is a “block 

transaction” rule in TWSE which is tailored for those orders which order size are 

larger than 500,000 shares. In practice, only those who can find counterparty first or 
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transfer shareholdings for financial planning, under these occasions, i.e. they have 

certain counterparty, then investors will trade under “block transaction” rule. For a 

common sell side, he may choose “call auction” rather than choose “block 

transaction”, because his intention to sell stock may become known to the public 

when he try to find counterparty for “block transaction”, and may further affect or 

decrease the market price before he trade. Only trade by using “call auction” can hide 

his intention to sell. Therefore, from practical purpose and future applications point of 

view, in this study, we only analyze the transaction cost of market orders matching 

under “call auction” rule, we do not analyze the transaction cost of orders matching 

under “block transaction” rule. 

1.3 Research framework 

We review literature of order-driven agent-based model first. Based on the 

order-driven model proposed by Daniels, Farmer, Gillemot, Iori, Smith (2003), we 

build three order-driven event time stock markets comply with the matching rule 

employed by Taiwan Stock Exchange (TWSE). We estimate parameters of these 

models from historical data, and simulate trading. Finally, we compare historical 

transaction cost and simulated cost. Fig. 1 shows the framework of this study. 

 

Fig. 1 Research framework 

Literature Review 

Event Time modeling 

（DFGIS（2003）, modeling duration by using ACD, 

modeling both duration and order size by using ACD） 

Estimate parameters of these three models from historical 

data. Run simulation and record transaction cost. 

Compare and analyze the transaction cost between real 

data and simulation result. 
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2. Literature review 

2.1. Agent-based models 

Daniels et al. (2003) proposed an agent-based model which is not composed of 

many agents. They use five market parameters to build an order-driven stock market. 

These parameters including two order flow rates: limit order arrival rate (α), market 

order arrival rate (μ), and order cancelation rate (δ), average order size (σ), price 

tick size dp. Because of lacking rationality and learning, this is a zero intelligence 

agent-based model. 

Farmer, Patelli and Zovko (2005a) tested Daniels et al. (2003) model with data 

from eleven stocks in London Stock Exchange in the period from August 1st 1998 to 

April 30 2000. They find that this order-driven model can do a good job of predicting 

or explaining spread and price impact curve. 

Guo (2005) implemented a trading platform in Python based on Daniels et 

al.(2003) model (He called it “SFGK model”). This platform has an agent-based 

client-server framework, besides, it has a user interface for human to participate in 

trading. He tested the mid-price and spread of the model. He performed experiments 

of two liquidation strategies, and compared the transaction cost results. 

2.2. Algorithmic trading 

Algorithmic trading is an emerging topic in asset management industry. Broadly 

speaking, algorithmic trading contains using computer program to generate trading 

strategy or buy-sell signals, and automatic order submission. In academia, optimal 

execution strategy is a popular topic which is a topic about how to liquidate a given 

amount of securities at a minimum transaction cost. 

In the literature of optimal execution, Almgren and Chriss (2000) mentioned “the 

total cost of trading” is the difference between the initial book value and the capture. 

They distinguished two kinds of market impact: temporary impact and permanent 

impact. Under the assumption that price impact functions are linear functions, they 

solved the constrained optimization problem, and derived the efficient frontier of 

optimal trading strategy which is the curve describe optimal trading strategy or 

minimum trading cost strategy for different risk-averse investors. 

The difference between algorithmic trading literature and this study is that 

algorithmic trading literature always describes the optimal execution problem as an 

optimization problem. They cannot easily solve the problem without making some 

assumptions about price impact functions and stochastic process of stock price. In 

contrast to the algorithmic trading literature, this study use agent-based models for 
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trading cost simulation. The assumptions are more flexible in agent-based models 

than in solving optimization problems. We only need to make some assumptions 

about how to generate orders and cancel orders, and then we can simulate and analyze 

trading cost. 

2.3. Autoregressive conditional duration model 

Engle and Russell (1998) proposed the autoregressive conditional duration 

model (ACD model) for the analysis of irregular waiting times between transaction 

events (the time interval is called duration). This time series model can measure and 

predict density of events. They also found that this model can do a good job of 

reducing Ljung-Box statistics of durations. They suggested joint modeling of volumes, 

transaction prices, and quotes would give better understanding of the fundamental 

mechanisms of time variation in liquidity of NYSE markets. 

Manganelli (2002) suggested volume is a kind of clustering activities; therefore 

one can view volume as an autoregressive process. He suggested that it is plausible to 

model volume in a ACD fashion. Besides, volume and duration are both positive 

value variables. He called these models autoregressive conditional volume (ACV) 

models. The simplest ACV is an ACV(1,1): 

ttt ηφν = , ( )2,1...~ ηση diit  
( 1 ) 

11 −− ++= ttt βφανωφ , 
( 2 ) 

Since volume tν  is a positive value variable, tη  is also a positive value 

variable. He tested this model on a sample of ten stocks traded in the NYSE. He found 

that for those frequently traded stocks, the autoregressive coefficients （β） are 

always above 0.9. He believed this finding indicate that the empirical regularities 

found for durations hold for volume as well. 

3. Transaction cost analysis and the models 

3.1. Transaction cost analysis 

Before discussion about transaction cost analysis framework of this study, we 

review definition of effective market order and effective limit order first. In Daniels et 

al. (2003) model, only two types of order are allowed. One is market order the other is 

limit order which order price is not allowed to cross best bid price or best ask price, 

i.e. for a limit buy order, the price must be below the best ask price; for a limit sell 

order, the price must be above the best bid price. In stock market practice, the price of 
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limit orders may cross best price, and the number of order types are usually more than 

two. For simplicity of analysis and complying with Daniels et al. (2003) model, 

Farmer et al. (2005b) define effective market orders as shares that result in a trade 

immediately, and effective limit orders as shares that will leave shares in order book. 

They split orders that cross the opposing best price into effective market orders and 

effective limit orders by these definitions, and then calculate model parameters. 

We define transaction cost as the difference between the amount of possible 

transaction and amount of immediate transaction of an effective market order. We 

adopt the method applied by Farmer et al. (2005b) for splitting the orders that cross 

the opposing best price into effective market orders and effective limit orders, and 

calculate transaction cost of each effective market order that result in a transaction 

immediately. 

Fig. 2 illustrates about how to split an order that cross the opposing best price. 

The best bid price is 10 and 20 shares. If a limit sell order arrives with price 10 and 30 

shares, this order will result in a transaction with price 10 and 20 shares and leave 10 

shares in the sell order book ceteris paribus. Thus, we split this 30 shares sell order 

into an effective market sell order with 20 shares and an effective limit sell order with 

10 shares. Because of the split, mismatch between actual matching shares and 

effective market shares may happen when we calculate the transaction amount from 

matching shares. If this situation happens, we use the shares of effective market order 

to calculate the transaction amount. 
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The amount of possible transaction is calculated by best price multiply by shares 

of effective order. This amount means the investor’s expectation transaction amount at 

next match. Hence, the transaction cost in this study can also be interpreted as the 

difference between investor’s expected transaction amount and actual transaction 

amount. 

We neglect the orders arrive before the first disclosure in a trading date when we 

calculate the model parameters. Because the opposing best prices of these orders are 

not available, we cannot tell whether these orders are effective market orders or 

effective limit orders. Also, we neglect the orders after market close. 

The amount of immediate transaction means that the effective market order must 

result in transaction at next match, and then we calculate transaction cost of this order. 

For those orders do not be matched at next match, the investors of these orders may 

pay some waiting cost. The transaction cost calculation is much more complex in this 

situation than in the situation of immediately transaction. 

When limit up or limit down happens, i.e. best ask or best bid is not available, 

the new arrived buy order may be a limit buy order or a market buy order. In this 

situation, we classify this order into a market order or a limit order by a presumed 

probability. The presumed probability may be inaccurate. In our sample time intervals, 

Order Book 

Buy     

Price  Qty 

10    20 

Before Match After Match 

Order Book 

      Sell 

Price  Qty 

10   10 

Matched Order 

Sell, Price=10, 

Qty=20 

Sell Order, 

Price=10, Qty=30 
Sell Limit Order, 

Price=10, Qty=10 

Sell Market Order, 

Price=10, Qty=20 

In real world 

In analysis framework 

(effective limit order) 

(effective market order) 

Fig. 2 Split an actual sell order into an effective market order and an effective limit order 
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limit up or limit down only happen in a few trading days, therefore the calculation of 

number of effective market orders may only be affected slightly by the inaccuracy of 

presumed probability. 

The percentage expression of transaction cost is defined as follows: 

X=expected number of shares of immediate transaction 

For market buy orders, transaction cost is: 
Xaskbest 

Xaskbest -Xprice trade

×

××
 

For market sell orders, transaction cost is: 
Xbidbest 

Xprice tradeXbidbest 

×

×−×
 

Under call auction matching rule, transaction cost may be positive or negative by 

definition. The negative transaction cost means that investors get a better trade price 

than they expect and vice versa. 

3.2. Transaction cost models: event time modeling 

The zero intelligence agent-based models of this study base on the model 

proposed by Daniels et al. (2003). Daniels et al. (2003) model is an event time model, 

i.e. the events in their model are not connected with real time. In the event time model, 

we substitute a series of events happen in a trading day for the trading hours of a 

trading day. Basically, there are three kinds of event: limit order placement (denoted 

byαin this study, denoted by “L” in event series), market order placement (denoted 

byμin this study, denoted by “M” in event series) and order cancelation (denoted by

δin this study, denoted by “C” in event series). The calculation of model parameters 

also bases on events. 

From the simulation point of view, the simulation base on event time and the 

simulation base on real time are equivalent in simulation results. For example, 

suppose that we simulate a series of events: LMLCL..., actually it is equivalent to the 

simulation base on real time: L...real time elapsed…M...real time elapsed…L...real 

time elapsed…C...real time elapsed…L…. The advantage of event time modeling is 

that we can save simulation time, i.e. we do not waste the time between events. 

The model proposed by Daniels et al.（2003）is a continuous double auction zero 

intelligence agent-based model. The data employed here comes from TWSE. The 

matching rule employed by TWSE is “call auction”. The orders in TWSE match once 

every 25 seconds. The matching rule of the zero intelligence agent-based models of 

this study is also modified to have a call auction every 25 events if one event 

represents one second. Hence, we add two kinds of events in our models: one is blank 

event (denoted by “N” in event series), the other is matching event (denoted by “T” in 

event series) for this modification. Suppose that one event represents one second, a 
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letter “E” represents an event, the event series in trading hours of TWSE can be 

represented by TEEEEEEEEEEEEEEEEEEEEEEEET...for example. 

The types of order in this study are the same with the Daniels et al.（2003） 

model, only limit order and market order are allowed. The buy price of a limit buy 

order cannot higher than or equal to the best ask price, and the sell price of a limit sell 

order cannot lower than or equal to the best bid price. The difference between Daniels 

et al. (2003) model is that the prices of all orders are limited by the price change limit 

employed by TWSE which is the price change interval between closing price of 

previous trade day minus 7% and closing price of previous trade day plus 7%. Thus, 

in this study, the order price of buy market order is limit up, the order price of sell 

market order is limit down. The tick sizes of this study are also tailored to the tick 

sizes of TWSE. 

Another difference among Daniels et al. (2003) model is that the best prices in 

simulation of this study are the unexecuted best bid price and unexecuted best ask 

price during last match, not actual best bid price and actual best ask price in order 

book. This difference result from that the stock market in TWSE is not a continuous 

auction market. TWSE match stock orders once every 25 seconds (i.e. call auction), 

and then disclose those best five unexecuted order prices and volumes. TWSE does 

not disclose any information about new arrival orders between 25 seconds, and stock 

market investors in TWSE have no way to obtain the real-time best prices in reality. 

We make this modification such that our models coincide with actual environment in 

TWSE. 

The input parameters of our agent-based models are as follows: 

)(αp : ratio of limit order placements to number of events during the trading day. 

)(µp : ratio of market order placements to number of events during the trading 

day. 

)(δp : ratio of order cancelations to number of events during the trading day. 

The sum of probability of all kinds of events must be equal to 1. Hence, the ratio 

of blank event is determined after we have the three ratios above. 

( ) ( )δµα pppnp −−−= )(1)( . 

σ : average order size per order. One unit of σ  represents 1,000 shares of 

securities. The average order size in this study is a random variable follows 

half-normal distribution with mean σ  and standard deviation σ
π

2

2−  （Weisstein, 

2005）. The order size in our model is a positive integer, i.e. the order size should be 

multiple of 1,000 shares, and the maximum order size is 499,000 shares the same with 

the order size restriction in reality. 
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The methodology of model parameters estimation is based on Farmer et al. 

(2005b). We calculate model parameters day by day first, and then calculate mean 

values weighted by the daily number of events. This methodology implies an 

important assumption that the daily probability distributions of these parameters are 

identical. This is also an important assumption in this study. 

The computer program of this study is developed using Python Programming 

Language. The program generates series of events first, and then executes each event 

sequentially. If the event is a matching event (“T”) the program executes matching
2
. If 

the event is a market order placement (“M”) or a limit order placement (“L”) the 

program draws the order size, then decide buy order or sell order (the probability is 

50% each), then submit the order. If the event is an order cancelation (“C”) the 

program decides to cancel buy order or sell order
3
 (the probability is 50% each), then 

cancels an order randomly from the order book. If the event is a blank event (“N”) the 

program executes nothing and flows to next event. Fig. 3 is the flow chart of the 

program of our agent-based models. 

Generate 

event list

Matching 

event（”T”）TMLLCM…

Market 

order 

placement（”M”） Order 

cancelation（”C”） blank 

event（”N”）Limit order 

placement（”L”）
Determine 

order size

Determine 

buy or sell

Determine order 

price, submit the 

order

Decide to cancel 

buy order or sell 

order

cancels an 
order randomly 
from the order 

book 

matching

Start

Determine 

order size

Determine 

buy or sell

Determine order 

price, submit the 

order
 

Fig. 3 Flow chart of our agent-based models 

We have two methods to generate event list and we describe these methods as 

follows: 

3.2.1 Determine event type by parameter directly 

The first method is deciding types of each event sequentially according to the 

probability of each event (p(α)、p(μ)、p(δ)、p(n)). For example, 

                                                 
2
 A general reference to the matching engine programming is Shetty and Jayaswal(2006). 

3
 A reference to the design of generating order ID is Hetland(2008). 
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TN=>TNL=>TNLM=>TNLML=>…. The probabilities of kinds of events are 

calculated as follows: we calculate ratios of kinds of events day by day in our sample 

period, and then calculate mean values of these ratios weighted by the daily number 

of events. Since this method and the model are proposed by Daniels et al. (2003), we 

call this DFGIS model. 

3.2.2 Determine duration by ACD model first, and then determine event type 

The second method is that we generate duration using autoregressive conditional 

duration model (ACD, Engle and Russell(1998)), and then decide event type 

sequentially. For example, in the beginning we have an event list (if one event 

represents one second) filled with blank events between matching events, i.e. …TN 

NNNNNNNNNNNNNNNNNNNNNNNT…, and then we generate a duration list (x) 

using ACD model, and then discretize the durations, for example x=[…,1,2,3,4,…]. 

We can rewrite the original blank list to be …TE1E2NE3NNE4NNNE5...(a letter “E” 

represents an event) by definition of duration, and then decide what kind of event 

sequentially by the probability of events (p(α)、p(μ)、p(δ)), for example if E1=L、

E2=M、E3=C、E4=L、E5=M. We can further rewrite the event list to be …TLMNCN 

NLNNNM…. 

The parameters of ACD model are estimated as follows. We estimated ACD 

parameters from the durations of each trading day with EACD(1,1) model. 

iiix εψ=  ( 3 ) 

11110 −− ++= iii x ψβααψ  ( 4 ) 

ε is a random variable follows exponential distribution, its mean is 1. Since ix is 

a positive value, we have to assume that 00 >α , 01 ≥α  and 01 ≥β  (Tsay, 2008). 

If the significance levels of estimates fail to match criterion or the one of the estimates 

is negative, we exclude the estimates. We calculate mean values of the effective 

estimates weighted by the daily number of events, and then we use this ACD model as 

the duration data generation process (DGP) of our simulation. 

The only difference between this model and DFGIS is that in the beginning of 

simulation, this model generate event list using ACD model. Since other parts of the 

model are the same with DFGIS model, we call this DFGIS-ACD model. 

The reason of using ACD model as the DGP of duration is that this method may 

replicate the intraday pattern of duration. For example, Fig. 4 is the intraday durations 

of TSMC on April 17th 2008, the frequency of transaction is relatively high after 

market open and before market close, and the frequency of transaction is relatively 

low in the middle of a trading day. The DFGIS-ACD model may replicate this 
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inverted-U shape of durations, while the duration pattern in DFGIS model is purely 

random. 

 

Fig. 4 Durations of TSMC(2330.TW) on April 17th 2008 

3.2.3 Determine both duration and order size by ACD model 

We find that for those thinly traded stocks the transaction cost in our simulation 

is generally higher than actual transaction cost. Since the matching rule, price ticks 

are the same with TWSE, we think that this difference may come from decision rules 

of order size, decision rules of buy or sell, order price and durations. For a thinly 

traded stock, if there is no enough opposing orders in order book, the transaction cost 

of a market order will be high. In reality, investors of thinly traded stock will wait 

until the opposing side has enough orders then they submit their market orders. 

Therefore, in order to approximate the effect of order size clustering, we think that it 

is plausible to model order size with autoregressive process the same with the idea 

proposed by Manganelli (2002). We build this model on the basis of DFGIS-ACD 

model, but in this model, we generate order size using EACD(1,1) model rather than 

draw a random variable from half-normal distribution. We call this model 

DFGIS-ACD-ACD model. 
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4. Empirical data analysis and simulation result 

4.1. Empirical data analysis result 

In recent years, the securities listed in stock exchange are not only stock, warrant 

but also exchange traded fund (ETF) and real estate investment trust fund (REIT). 

ETF are baskets of stocks, and they are important vehicles of passive investment. 

Theoretically, REIT have better liquidity than holding real estate directly. Therefore, 

in addition to stocks we also include ETF and REIT as our samples of transaction cost 

analysis. The samples of this study are as follows: Taiwan Top50 Tracker Fund 

(0050.TW), Polaris/P-shares Taiwan Dividend+ ETF (0056.TW), Cathay No.2 Real 

Estate Investment Trust (01007T.TW), Gallop No.1 Real Estate Investment Trust 

Fund (01008T.TW), China Steel (2002.TW), TSMC (2330.TW), MediaTek 

(2454.TW), HTC (2498.TW), President Chain Store (2912.TW), Inotera (3474.TW). 

Table 1 shows the reasons of choosing these securities as our samples. The main 

purpose is that we hope the samples cover various characteristics as much as possible 

including high trading volume, low trading volume, high unit price and stocks for 

different risk appetites. All historical transaction data are provided by TWSE, 

including daily order data, match data, disclose data. We use data from February 2008 

to May 2008. 

Table 1 The reasons of our sample selection 

security ticker characteristics 

0050 ETF with high trading volume 

0056 ETF with low trading volume 

01007T REIT with high trading volume 

01008T REIT with low trading volume 

2002 Blue chip stock in TWSE 

2330 Stock with high trading volume and the largest market capitalization 

in TWSE 

2454 Stock with high unit price 

2498 Stock with high unit price 

2912 Stock with large market capitalization but low trading volume 

3474 Non-blue chip stock in TWSE (there is a net loss during the fiscal 

year) 

If one event represents 0.01 seconds, the number of total events in a trading day 

is 1,620,000 (matching events are included). Table 2 shows the ratios of effective limit 

order, effective market order and order cancelation to total number of events (the 

number of matching events should be excluded) in a trading day and the average order 
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size of these 10 securities. The average order size of Taiwan Top50 Tracker Fund 

(0050.TW) is larger than TSMC (2330.TW) because the proportion of market 

participants is different. The market makers are the major participants of Taiwan 

Top50 Tracker Fund (0050.TW) while the participants of TSMC (2330.TW) are 

various kinds of investors. Although TSMC (2330.TW) is the largest market 

capitalization stock and traded frequently, the average order size is only 14,000 

shares. 

Table 2 the ratios of effective limit order, effective market order and order cancelation to total number 

of events(×10
-3

) and the average order size 

p(α) p(µ) p(δ) σ

0050 2.498 1.029 1.586 45

0056 0.404 0.147 0.232 19

01007T 0.109 0.059 0.042 21

01008T 0.026 0.010 0.003 22

2002 6.292 5.007 1.923 10

2330 6.676 5.059 2.218 14

2454 4.401 4.404 2.086 3

2498 2.570 2.404 1.182 3

2912 0.900 0.644 0.414 5

3474 1.195 0.960 0.459 11  

Table 3 shows the descriptive statistics of transaction cost of our samples. 

Table 3 The descriptive statistics of transaction cost of our samples 

Historical Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

0050 0.69% -0.92% -0.00021 0.000639 23.17 0.04 101419

0056 2.22% -1.40% -0.00006 0.000743 122.77 0.01 16040

01007T 2.55% -1.58% -0.00001 0.00091 252.81 0.00 4912

01008T 1.12% -1.68% 0.00008 0.001133 90.85 0.00 872

2002 1.70% -1.89% -0.00045 0.001119 52.72 0.59 472354

2330 1.73% -1.88% -0.00056 0.001372 48.72 0.91 483565

2454 1.33% -1.47% -0.00039 0.001525 20.11 0.95 409985

2498 1.50% -1.63% -0.00038 0.001297 26.46 0.40 237582

2912 2.21% -2.67% -0.00072 0.00239 24.12 0.31 54480

3474 2.13% -2.97% -0.00050 0.002128 50.34 0.37 81450  

We group the transaction cost into classes and show the ratio of effective market 

orders which result in transaction immediately to total trade volume in Table 4. 
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Table 4 The ratios of effective market orders which result in transaction immediately to total trade 

volume in different classes 

Historical

2008.2-2008.5 Average Maximum Average Maximum Average Maximum Average Maximum Average Maximum Average Maximum

0050 - - - - 45.52% 65.88% 6.15% 24.51% - - - -

0056 - - 0.01% 0.71% 40.88% 79.82% 9.22% 52.45% 0.01% 1.00% 0.05% 0.05%

01007T - - 0.00% 0.12% 44.70% 98.79% 4.17% 50.83% 0.01% 2.22% 0.04% 0.04%

01008T - - 0.05% 7.35% 45.39% 100.00% 2.59% 71.43% 0.02% 3.45% - -

2002 - - 0.14% 12.74% 50.54% 71.49% 4.45% 26.33% 0.21% 18.40% - -

2330 - - 0.46% 17.10% 47.38% 69.50% 4.07% 33.37% 0.43% 24.09% - -

2454 - - 0.09% 4.56% 51.34% 68.51% 7.75% 21.25% 0.14% 8.45% - -

2498 - - 0.02% 1.51% 48.62% 67.43% 5.59% 18.90% 0.05% 5.81% - -

2912 0.09% 8.90% 0.14% 6.54% 44.18% 77.66% 2.70% 21.82% 0.18% 11.41% 0.01% 0.01%

3474 0.12% 13.68% 0.17% 8.91% 45.54% 67.54% 7.03% 50.54% 0.51% 17.13% 0.35% 0.35%

(1%,2%] (2%,3%](-3%,-2%] (-2%,-1%] (-1%,0%] (0%,1%]

 

The results presented in Table 2, Table 3 and Table 4 show that no matter how 

dense the events are (or transactions), the transaction costs largely lies between -1% 

and +1%, and the immediately traded effective market orders in these classes are 

averagely more than 50% of daily trade volume. The maximum transaction cost for an 

effective market order is smaller than 3%. 

4.2. Agent-based models simulation and result 

4.2.1. Model parameters 

Table 5, Table 6, and Table 7 show the parameters of DFGIS model, 

DFGIS-ACD model and DFGIS-ACD-ACD model respectively. The average order 

size σ  is the mean values of daily average order size weighted by the daily number 

of events. We simulate each model 10 times. The regular trading hours in TWSE is 

from 9:00 to 13:30, i.e. 16,200 seconds a trading day. Since one event represents 0.01 

second, there are 1,620,000 events in one simulation, i.e. one simulation represents 

one trading day. 

Table 5 Model parameters of DFGIS model 

DFGIS p(α) p(µ) p(δ) σ

0050 0.002498 0.001029 0.001586 45

0056 0.000404 0.000147 0.000232 19

01007T 0.000109 0.000059 0.000042 21

01008T 0.000026 0.00001 0.000003 22

2002 0.006292 0.005007 0.001923 10

2330 0.006676 0.005059 0.002218 14

2454 0.004401 0.004404 0.002086 3

2498 0.00257 0.002404 0.001182 3

2912 0.0009 0.000644 0.000414 5

3474 0.001195 0.00096 0.000459 11  

 



17 

 

Table 6 Model parameters of DFGIS-ACD model 

α0 α1 β1

0050 0.49101 0.19818 0.31081 45 0.248398 0.111447 0.75711

0056 0.52368 0.22209 0.25423 19 1.612183 0.196678 0.71537

01007T 0.53932 0.30501 0.15567 21 4.699356 0.170546 0.71378

01008T 0.68854 0.23696 0.0745 22 26.95272 0.396239 0.54607

2002 0.48324 0.37208 0.14468 10 0.00439 0.051353 0.945

2330 0.48021 0.35806 0.16173 14 0.010088 0.061769 0.9273

2454 0.40761 0.4018 0.19059 3 0.00109 0.035325 0.96404

2498 0.4193 0.39005 0.19065 3 0.003604 0.050384 0.94847

2912 0.46935 0.32722 0.20343 5 0.334493 0.167221 0.79569

3474 0.46828 0.36354 0.16818 11 0.059602 0.080292 0.91038

Duration
σDFGIS-ACD p(α) p(µ) p(δ)

 

Table 7 Model parameters of DFGIS-ACD-ACD model 

α0 α1 β1 α0 α1 β1

0050 0.49101 0.19818 0.31081 45 0.248398 0.111447 0.75711 15718.67 0.41644 0.35317

0056 0.52368 0.22209 0.25423 19 1.612183 0.196678 0.71537 6821.198 0.26412 0.48904

01007T 0.53932 0.30501 0.15567 21 4.699356 0.170546 0.71378 5768.225 0.24126 0.54444

01008T 0.68854 0.23696 0.0745 22 26.95272 0.396239 0.54607 4824.83 0.70482 0.28028

2002 0.48324 0.37208 0.14468 10 0.00439 0.051353 0.945 2204.159 0.05548 0.72424

2330 0.48021 0.35806 0.16173 14 0.010088 0.061769 0.9273 5775.498 0.15012 0.46215

2454 0.40761 0.4018 0.19059 3 0.00109 0.035325 0.96404 447.7474 0.03424 0.80359

2498 0.4193 0.39005 0.19065 3 0.003604 0.050384 0.94847 280.5444 0.04344 0.84912

2912 0.46935 0.32722 0.20343 5 0.334493 0.167221 0.79569 682.6172 0.10019 0.75914

3474 0.46828 0.36354 0.16818 11 0.059602 0.080292 0.91038 1495.037 0.09288 0.77113

DFGIS-ACD-ACD p(α) p(µ) p(δ) σ
Duration Order Size

 

The duration parameters of DFGIS-ACD model and the order size parameters of 

DFGIS-ACD-ACD model are estimated using EACD(1,1) model, and are weighted 

average of appropriate daily estimates. Furthermore, under the assumption of weakly 

stationary, the average order size is the function of order size parameters, i.e. the 

average order size μorder_size can be expressed as: 

11

0
_

1 βα

α
µ

−−
=sizeorder  

( 5 ) 

We can calculateμorder_size from Eq. ( 5 ) using order size parameters provided by 

Table 7 and compare with σ  in Table 5. We find that the average order size μ

order_size is obviously larger than σ  of four of our sample securities. In order to 

eliminate the effect of this deviation, we adjust 0α  of order size parameters such that 

0α  and σ  are equal. The parameters of DFGIS-ACD-ACD model are shown in 

Table 8. 
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Table 8 Model parameters of DFGIS-ACD-ACD model (after we adjust 0α  in Order Size) 

α0 α1 β1 α0_adjusted α1 β1

0050 0.49101 0.19818 0.31081 45 0.248398 0.111447 0.75711 10367.78 0.41644 0.35317

0056 0.52368 0.22209 0.25423 19 1.612183 0.196678 0.71537 4689.960 0.26412 0.48904

01007T 0.53932 0.30501 0.15567 21 4.699356 0.170546 0.71378 4500.216 0.24126 0.54444

01008T 0.68854 0.23696 0.0745 22 26.95272 0.396239 0.54607 327.712 0.70482 0.28028

2002 0.48324 0.37208 0.14468 10 0.00439 0.051353 0.945 2204.159 0.05548 0.72424

2330 0.48021 0.35806 0.16173 14 0.010088 0.061769 0.9273 5775.498 0.15012 0.46215

2454 0.40761 0.4018 0.19059 3 0.00109 0.035325 0.96404 447.7474 0.03424 0.80359

2498 0.4193 0.39005 0.19065 3 0.003604 0.050384 0.94847 280.5444 0.04344 0.84912

2912 0.46935 0.32722 0.20343 5 0.334493 0.167221 0.79569 682.6172 0.10019 0.75914

3474 0.46828 0.36354 0.16818 11 0.059602 0.080292 0.91038 1495.037 0.09288 0.77113

DFGIS-ACD-ACD
Order Size

p(α) p(µ) p(δ) σ
Duration

 

4.2.2. Trade volume(shares) and number of transactions 

We compare the weighted average of trade volume (shares) and number of 

transactions between sample data and simulation data of the three models, as shown in 

Table 9. We find that the results of the DFGIS model are generally larger than the 

sample data while the results of the DFGIS-ACD model and DFGIS-ACD-ACD 

model are generally smaller than DFGIS model. The reason of the larger trade volume 

of the models may be that the order sizes of market orders in the models are larger 

than actual market order sizes. When investors employ algorithmic trading, i.e. a large 

size market order will be split into many small size market orders, average order size 

of market order may be obviously smaller than limit order, but we does not calculate 

the average order size of market orders and limit orders respectively. Therefore, in 

simulation, we may overvalue the order size of market orders when we draw random 

variables (i.e. order size) from half-normal distribution with mean σ . The difference 

between DFGIS model and DFGIS-ACD model, DFGIS-ACD-ACD model may 

result from the difference in frequency of events, i.e. when the expectation of 

durations generated by ACD model larger than random durations, the trade will be 

less frequent hence the trade volume (shares) and number of transactions will be 

smaller and vise versa. 
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Table 9 Comparison between trade volume (shares) and number of transactions between sample data 

and simulation data 

Trade Volume(Share) Transaction Trade Volume(Share) Transaction

Historical 15,411,781               2,554        1,438,702                  352           

DFGIS 73,289,200               2,997        5,334,100                  506           

DFGIS-ACD 73,234,700               2,898        4,576,400                  418           

DFGIS-ACD-ACD 74,186,000               3,038        4,875,500                  437           

Trade Volume(Share) Transaction Trade Volume(Share) Transaction

Historical 1,731,457                  144           332,438                     24             

DFGIS 2,136,900                  190           447,200                     34             

DFGIS-ACD 2,927,500                  271           420,100                     35             

DFGIS-ACD-ACD 2,686,700                  259           175,900                     32             

Trade Volume(Share) Transaction Trade Volume(Share) Transaction

Historical 69,341,433               12,582      3,228,883                  1,369        

DFGIS 95,335,300               12,765      5,120,400                  1,819        

DFGIS-ACD 74,326,200               11,315      3,267,900                  1,169        

DFGIS-ACD-ACD 79,122,100               11,874      3,289,100                  1,278        

Trade Volume(Share) Transaction Trade Volume(Share) Transaction

Historical 6,475,480                  4,332        12,749,066               8,010        

DFGIS 10,357,200               4,788        17,604,900               7,809        

DFGIS-ACD 8,300,800                  4,227        12,638,000               6,381        

DFGIS-ACD-ACD 6,039,900                  3,460        14,559,000               7,685        

Trade Volume(Share) Transaction Trade Volume(Share) Transaction

Historical 50,360,139               12,062      11,124,524               2,183        

DFGIS 64,442,500               11,826      15,510,000               2,794        

DFGIS-ACD 46,743,400               9,762        11,258,500               2,087        

DFGIS-ACD-ACD 44,904,700               9,834        9,809,100                  1,847        

0050 0056

01007T 01008T

34742002

29122330

2498 2454

 

4.2.3. Liquidity transaction cost analysis 

We tabulate the descriptive statistics of transaction cost of historical data and the 

three models as shown in Table 10. Obviously, the transaction costs generated by the 

models are larger than sample data. This result may also result from the market order 

size difference between historical data and the models. The larger order sizes in the 

models result in the larger trade volumes and transaction costs than historical data. 

If we evaluate the models by the dispersion of simulation results relative to 

historical data, i.e. we calculate the range between historical extrema and simulatin 
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extrema as Eq. ( 6 ): 

actualsimulatedactualsimulated minminmax-max −+  
( 6 ) 

The smaller value in Eq. ( 6 ) the better the model is. The DFGIS model 

performs well in Polaris/P-shares Taiwan Dividend+ ETF (0056.TW), China Steel 

(2002.TW), TSMC (2330.TW), MediaTek(2454.TW) and HTC(2498.TW). The 

DFGIS-ACD model performs well in Taiwan Top50 Tracker Fund (0050.TW), Cathay 

No.2 Real Estate Investment Trust (01007T.TW), Gallop No.1 Real Estate Investment 

Trust Fund (01008T.TW), President Chain Store (2912.TW) and Inotera(3474.TW). 

The DFGIS-ACD-ACD model does not perform well in any securities, although it 

seems to increase kurtosis in some thinly traded securities, including Cathay No.2 

Real Estate Investment Trust (01007T.TW), Gallop No.1 Real Estate Investment Trust 

Fund (01008T.TW), President Chain Store (2912.TW). 

Table 10 The descriptive statistics of transaction cost of historical data and the three models 

0050 MaximumMinimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 0.69% -0.92% -0.00021 0.000639 23.17 0.04 101419

DFGIS 2.66% -3.05% -0.00116 0.006948 4.43 0.79 16470

DFGIS-ACD 2.57% -2.90% -0.00118 0.006643 4.28 0.74 16696

DFGIS-ACD-ACD 2.58% -3.86% -0.00129 0.007418 4.67 0.93 16915  
0056 Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 2.22% -1.40% -0.00006 0.000743 122.77 0.01 16040

DFGIS 4.48% -4.41% 0.00182 0.008189 9.38 0.16 2359

DFGIS-ACD 5.00% -4.19% 0.00182 0.008452 9.23 0.14 1921

DFGIS-ACD-ACD 5.15% -5.44% 0.00231 0.009205 9.39 0.17 1970  
01007T Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 2.55% -1.58% -0.00001 0.00091 252.81 0.00 4912

DFGIS 9.65% -6.42% 0.00503 0.01279 14.84 0.15 889

DFGIS-ACD 7.08% -6.58% 0.00469 0.01438 8.13 0.28 1339

DFGIS-ACD-ACD 9.47% -7.59% 0.00373 0.013285 11.68 0.22 1236  
01008T Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 1.12% -1.68% 0.00008 0.001133 90.85 0.00 872

DFGIS 6.39% -1.94% 0.00742 0.012946 8.15 0.02 129

DFGIS-ACD 4.27% -3.29% 0.00563 0.010077 6.31 0.01 139

DFGIS-ACD-ACD 4.71% -0.23% 0.00227 0.006504 22.12 0.01 156  
2002 Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 1.70% -1.89% -0.00045 0.001119 52.72 0.59 472354

DFGIS 1.79% -2.22% -0.00177 0.00562 3.42 2.56 81047

DFGIS-ACD 1.97% -2.33% -0.00182 0.006001 3.70 1.92 53404

DFGIS-ACD-ACD 2.65% -2.75% -0.00207 0.006939 3.98 2.34 48611  
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2330 Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 1.73% -1.88% -0.00056 0.001372 48.72 0.91 483565

DFGIS 2.03% -2.35% -0.00209 0.006375 3.37 3.31 81490

DFGIS-ACD 2.35% -2.67% -0.00210 0.006751 3.49 2.91 63906

DFGIS-ACD-ACD 2.68% -3.16% -0.00240 0.007609 3.65 3.67 63479  
2454 Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 1.33% -1.47% -0.00039 0.001525 20.11 0.95 409985

DFGIS 2.93% -3.62% -0.00275 0.008793 3.45 5.51 71213

DFGIS-ACD 4.04% -4.74% -0.00276 0.009238 4.54 4.07 47687

DFGIS-ACD-ACD 4.01% -4.86% -0.00286 0.009744 4.37 5.67 59724  
2498 Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 1.50% -1.63% -0.00038 0.001297 26.46 0.40 237582

DFGIS 3.76% -4.65% -0.00305 0.011251 3.78 4.90 38727

DFGIS-ACD 4.82% -5.49% -0.00272 0.010957 4.59 3.62 30114

DFGIS-ACD-ACD 4.76% -5.46% -0.00296 0.011787 4.79 3.10 22346  
2912 Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 2.21% -2.67% -0.00072 0.00239 24.12 0.31 54480

DFGIS 7.32% -11.11% -0.00111 0.015314 8.40 2.42 10320

DFGIS-ACD 6.00% -7.38% -0.00038 0.012509 9.89 0.98 6242

DFGIS-ACD-ACD 9.26% -9.71% -0.00070 0.014384 10.48 1.30 6264  
3474 Maximum Minimum Mean Std. Dev. Kurtosis Sum Sq. Dev. Observations

Historical 2.13% -2.97% -0.00050 0.002128 50.34 0.37 81450

DFGIS 5.35% -6.43% -0.00284 0.015003 4.38 3.50 15556

DFGIS-ACD 5.15% -6.59% -0.00181 0.014359 5.23 2.13 10317

DFGIS-ACD-ACD 6.03% -6.88% -0.00158 0.013863 5.74 1.71 8902  

We group the simulated transaction cost into classes and show the ratio of 

effective market orders which result in transaction immediately to total trade volume 

in Table 11. Since the transaction costs disperse in a wide range (the maximum is 

9.65%, the minimum is -11.11%), what we concern in this study is the cost paid by 

the investors, i.e. positive transaction costs , we group the negative and zero 

transaction cost into one class, and tabulate the positive classes in detail in Table 11. 

We compare the simulated ratios with historical ratios, and find that DFGIS model 

performs well in Polaris/P-shares Taiwan Dividend+ ETF (0056.TW), Cathay No.2 

Real Estate Investment Trust (01007T.TW), China Steel (2002.TW), TSMC 

(2330.TW), MediaTek (2454.TW), and HTC(2498.TW). The DFGIS-ACD model 

performs well in Taiwan Top50 Tracker Fund (0050.TW), Gallop No.1 Real Estate 

Investment Trust Fund (01008T.TW), President Chain Store (2912.TW), and Inotera 

(3474.TW). 
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Table 11 The ratio of effective market orders which result in transaction immediately to total trade 

volume in different classes 

0050

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 45.52% 65.88% 6.15% 24.51% - - - - - - - -

DFGIS 26.99% 30.88% 21.39% 23.52% 2.69% 3.68% 0.08% 0.41% - - - -

DFGIS-ACD 27.19% 31.44% 22.34% 25.55% 2.41% 4.20% 0.10% 0.77% - - - -

DFGIS-ACD-ACD 24.45% 28.43% 21.37% 25.89% 4.33% 7.46% 0.46% 1.39% - - - -

(0%,1%] (1%,2%] (2%,3%] (3%,4%] (4%,10%](-12%,0%]

 

0056

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 40.89% 79.82% 9.22% 52.45% 0.01% 1.00% 0.05% 0.05% - - - -

DFGIS 13.53% 16.71% 22.70% 31.81% 5.09% 8.33% 1.11% 3.18% 0.28% 1.44% 0.06% 0.84%

DFGIS-ACD 13.93% 17.18% 20.56% 28.06% 5.17% 9.95% 1.30% 4.35% 0.47% 2.73% 0.08% 0.92%

DFGIS-ACD-ACD 12.55% 16.26% 16.92% 23.50% 6.91% 11.95% 2.73% 8.46% 1.00% 4.68% 0.28% 3.02%

(-12%,0%] (0%,1%] (1%,2%] (2%,3%] (3%,4%] (4%,10%]

 

01007T

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 44.70% 98.79% 4.17% 50.83% 0.01% 2.22% 0.04% 0.04% - - - -

DFGIS 13.51% 20.46% 17.21% 27.30% 7.72% 16.28% 3.28% 13.94% 1.57% 5.79% 1.26% 10.25%

DFGIS-ACD 16.23% 21.25% 15.01% 25.74% 7.66% 14.17% 3.69% 8.02% 3.14% 7.60% 1.67% 8.10%

DFGIS-ACD-ACD 14.30% 21.55% 17.08% 26.97% 7.48% 16.94% 4.36% 10.43% 1.79% 6.02% 1.67% 8.87%

(-12%,0%] (0%,1%] (1%,2%] (2%,3%] (3%,4%] (4%,10%]

 

01008T

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 45.44% 100.00% 2.59% 71.43% 0.02% 3.45% - - - - - -

DFGIS 9.25% 19.60% 13.14% 39.53% 4.42% 12.53% 3.25% 15.93% 2.09% 14.05% 2.94% 17.52%

DFGIS-ACD 10.04% 26.91% 13.98% 34.52% 5.88% 24.77% 4.69% 24.59% 0.67% 7.62% 0.83% 10.26%

DFGIS-ACD-ACD 7.87% 31.55% 3.66% 24.18% 0.99% 8.22% 1.14% 11.72% 1.08% 21.61% 0.92% 18.34%

(-12%,0%] (0%,1%] (1%,2%] (2%,3%] (3%,4%] (4%,10%]

 

2002

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 50.68% 73.56% 4.45% 26.33% 0.21% 18.40% - - - - - -

DFGIS 44.06% 47.62% 20.85% 24.13% 1.21% 2.10% - - - - - -

DFGIS-ACD 39.64% 42.87% 17.86% 21.75% 1.76% 3.52% - - - - - -

DFGIS-ACD-ACD 36.31% 41.51% 17.69% 21.68% 2.47% 4.32% 0.12% 0.36% - - - -

(1%,2%] (2%,3%] (3%,4%] (4%,10%](-12%,0%] (0%,1%]

 

2330

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 47.84% 69.58% 4.07% 33.37% 0.43% 24.09% - - - - - -

DFGIS 44.68% 47.26% 19.61% 22.27% 1.96% 3.13% 0.01% 0.19% - - - -

DFGIS-ACD 41.76% 46.93% 18.25% 21.83% 2.30% 3.56% 0.03% 0.22% - - - -

DFGIS-ACD-ACD 39.51% 43.72% 18.66% 22.06% 3.01% 4.90% 0.25% 0.76% - - - -

(-12%,0%] (0%,1%] (1%,2%] (2%,3%] (3%,4%] (4%,10%]

 

2454

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 51.43% 68.51% 7.75% 21.25% 0.14% 8.45% - - - - - -

DFGIS 45.68% 48.20% 20.48% 23.30% 4.54% 6.17% 0.40% 0.85% - - - -

DFGIS-ACD 41.90% 49.15% 18.91% 22.43% 3.89% 6.18% 0.63% 2.00% 0.11% 0.74% 0.00% 0.03%

DFGIS-ACD-ACD 42.39% 45.43% 19.18% 24.27% 4.67% 6.61% 0.86% 2.02% 0.18% 0.84% 0.01% 0.25%

(-12%,0%] (0%,1%] (1%,2%] (2%,3%] (3%,4%] (4%,10%]

 

2498

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 48.64% 67.43% 5.59% 18.90% 0.05% 5.81% - - - - - -

DFGIS 40.08% 45.71% 19.10% 23.10% 4.99% 7.58% 1.33% 3.61% 0.21% 0.75% - -

DFGIS-ACD 39.31% 45.87% 17.58% 21.39% 4.31% 6.55% 1.14% 1.97% 0.27% 1.40% 0.03% 0.30%

DFGIS-ACD-ACD 33.90% 40.08% 16.56% 21.03% 4.36% 6.81% 1.55% 3.77% 0.49% 1.28% 0.03% 0.33%

(-12%,0%] (0%,1%] (1%,2%] (2%,3%] (3%,4%] (4%,10%]

 

2912

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 44.41% 77.66% 2.70% 21.82% 0.18% 11.41% 0.01% 0.01% - - - -

DFGIS 29.49% 33.05% 18.31% 25.09% 4.31% 7.16% 2.16% 5.22% 1.03% 3.25% 0.74% 2.76%

DFGIS-ACD 26.54% 30.56% 19.14% 26.14% 3.77% 6.27% 1.48% 4.85% 0.64% 3.19% 0.58% 2.30%

DFGIS-ACD-ACD 25.93% 34.18% 17.86% 25.80% 4.11% 7.42% 1.68% 6.05% 1.06% 2.72% 0.97% 3.58%

(1%,2%] (2%,3%] (3%,4%] (4%,10%](-12%,0%] (0%,1%]
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3474

Average MaximumAverage MaximumAverage MaximumAverage MaximumAverage MaximumAverage Maximum

Historical 45.84% 67.54% 7.03% 50.54% 0.51% 17.13% 0.35% 0.35% - - - -

DFGIS 31.29% 36.02% 17.09% 20.48% 5.41% 6.85% 2.51% 3.85% 0.96% 2.00% 0.28% 0.72%

DFGIS-ACD 28.15% 32.32% 15.58% 19.76% 5.42% 9.52% 2.48% 4.15% 0.93% 2.13% 0.21% 0.80%

DFGIS-ACD-ACD 25.39% 28.85% 15.56% 22.07% 5.54% 7.98% 2.81% 5.94% 0.88% 2.55% 0.40% 1.57%

(-12%,0%] (0%,1%] (1%,2%] (2%,3%] (3%,4%] (4%,10%]

 

The results of Table 10 and Table 11 show that in general, the DFGIS model 

performs well in those frequently traded securities (China Steel (2002.TW), TSMC 

(2330.TW), MediaTek (2454.TW) and HTC (2498.TW)), and the DFGIS-ACD model 

performs well in the relatively thinly traded securities (Taiwan Top50 Tracker Fund 

(0050.TW), Gallop No.1 Real Estate Investment Trust Fund (01008T.TW), President 

Chain Store (2912.TW), Inotera(3474.TW)). 

The dispersion of simulated transaction costs is averagely larger than historical 

data. The frequency of events and matching rule of our agent-based models are the 

same with actual stock market. The major differences are permutation of events and 

market order price. In reality, investors in stock market generally do not place their 

orders blindly with limit up or limit down price, especially when they have large order 

size. They tend to wait for the appearance of opposing order size, and then place their 

market orders. This behavior is a reason for the smaller transaction cost in actual 

stock market. Another possible reason is that the market order sizes in our agent-based 

models may be larger than those in actual market, i.e. our models do not take the 

mitigation of price impact from the employment of algorithmic trading into account. 

Our simulation results show that the attempt to model the behavior of clustering 

order placement (the DFGIS-ACD-ACD model) fail to meet our expectation. As 

Farmer et al.(2005b) state that the zero-intelligence models are not trying to claim that 

intelligence doesn’t play an important role in financial agents, these models provide a 

benchmark to separate properties that are driven by market institution from those 

driven by intelligent behavior, we believe that the actual distribution of transaction 

cost may be driven mainly by intelligence of stock market participants. If we hope 

that the simulation result to be closer to actual result, adding some intelligence (or 

order placement strategy) in the model seem inevitable. 

In spite of some inaccuracies, our simulation results show how much transaction 

cost an impatient investor would pay if he would like to liquidate his security in a 

short span of time. For example, an investor’s shareholdings is 40% of daily trade 

volume, if he would like to liquidate his holdings in a trading day, the maximum 

transaction cost may be 2% to 3% instead of zero cost from historical result as shown 

in Table 11. 
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5. Conclusion and discussion 

5.1. Conclusion 

This study builds three simple order-driven zero intelligence agent-based 

artificial stock market models. These models are tailored to the trading rules 

employed by TWSE. 

The samples of this study cover different investment vehicles and various 

characteristics. They are as follows: Taiwan Top50 Tracker Fund (0050.TW), 

Polaris/P-shares Taiwan Dividend+ ETF (0056.TW), Cathay No.2 Real Estate 

Investment Trust (01007T.TW), Gallop No.1 Real Estate Investment Trust Fund 

(01008T.TW), China Steel (2002.TW), TSMC (2330.TW), MediaTek (2454.TW), 

HTC (2498.TW), President Chain Store (2912.TW), Inotera (3474.TW). We use data 

from February 2008 to May 2008. 

We compare the simulation transaction cost with actual transaction cost. All 

actual transaction costs are smaller than 3%, but the simulated transaction costs are 

much higher. The results show that investors do not submit market orders blindly, they 

may split a market order with large order size into many market orders with small 

order size or they may wait for the appearance of the opposing orders. But if an 

investor is eager to liquidate his holdings, i.e. he does not want to split his orders or 

wait for a long time, our models would be useful tools for transaction cost estimation 

in this situation. We also find that the DFGIS model performs well in frequently 

traded securities and DFGIS-ACD model performs well in securities not traded 

frequently. 

The simulation results shown in Table 10 and Table 11 can be reference for the 

investors of these 10 securities. For example, if an investor’s shareholding is 15% of 

daily trade volume, he can liquidate his shareholding in one trading day without any 

transaction cost on the average. If he holds more than 50% of the daily trade volume 

and want to liquidate in a trading day, the maximum transaction cost may be 7%. 

Limitation of this study is as follows: the models in this study can only estimate 

the transaction cost in common market condition. Joulin, Lefevre, Grunberg, and 

Bouchaud（2008）analyzed 893 stocks in NASDAQ and NYSE and found the relation 

between price jumps and news in Dow Jones using data from 2004 to 2006. They 

found that the price jumps are much more than the news. They believed that the 

spontaneous price jumps come from vanishing liquidity. The explanation of vanishing 

liquidity is as follows: liquidity providers place their limit order cautiously, and tend 

to cancel orders when uncertainty signals appear. Our models cannot estimate the 
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transaction cost in extremely pessimistic market condition with vanishing liquidity. 

5.2. Suggestions for further research 

Firstly, the parameter estimation in the DFGIS-ACD model using EACD(1,1) is 

a tentative experiment, it does not mean that EACD(1,1) is the best model. Although 

there are many extensions of ACD model, very few studies compare different ACD 

models using the same data (Pacurar, 2008). Hence, in the future we can incorporate 

different extensions of ACD model into our models. 

Secondly, we assume the order size in DFGIS model and DFGIS-ACD model 

follows half-normal distribution, and in DFGIS-ACD-ACD model follows 

exponential distribution. We find that the frequency of large order size in half-normal 

distribution is obviously smaller than actual data. As Fig. 5 shows, in the 

DFGIS-ACD model, the order sizes are less than 300,000 shares, but the maximum 

order size could be 499,000 shares in reality. The growth of algorithmic trading in 

recent years results in the high frequency of specific order size (for example, 10, 20 or 

50). For example, Fig. 6 shows that some market participants of Taiwan Top50 

Tracker Fund (0050.TW) split their orders into many small orders with order size 10. 

In the future, we can simulate the order size using historical distribution instead of a 

common probability distribution. 
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Fig. 5 Comparison of order size between simulation and historical data. (Taiwan Top50 Tracker Fund 

(0050.TW) on March 20th 2008, and we only show the part in which order size larger than 50,000 

shares) 

 

Fig. 6 Split large orders into many small orders with order size 10. (Taiwan Top50 Tracker Fund 

(0050.TW) on March 20th 2008, and we only show the part in which order size smaller than 100,000 

shares) 

Thirdly, the models of this study have high flexibility, and it is easy to extend the 

models in many aspects. A more subtle calibration of model parameters may give 

better results. For example, if we would like to simulate the effect of algorithmic 
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trading, we can calibrate the order size parameter of market order and limit order 

respectively so that the market order and limit order have their own model parameters 

respectively in simulations. The parameters of ACD model can be estimated subtly so 

that the difference between simulated durations and actual durations can be eliminated. 

We can also calibrate the model parameters of buy order and sell order respectively so 

that we can simulate transaction cost in different market conditions, for example, 

strong buying and strong selling. 

Another point is that the result of this study is “a priori knowledge”. We can 

further get “a posteriori knowledge” by performing experiments on different trading 

strategies in our models, and analyzing the transaction costs of these trading 

strategies. 

Finally, in order to achieve further improvement on efficiency of trading, TWSE 

changes from call auction to continuous auction step by step. The matching rule of 

warrants has employed continuous auction since June 28 2010. Therefore, the models 

of this study should be changed to continuous auction in the future. Furthermore, 

comparison of transaction cost between call auction and continuous auction can be 

made in order to be the reference for stock exchange when designing matching rules. 
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