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ABSTRACT

The goal of the paper is to show various results on agent-based financial market modeling1–3 in the spe-
cific context of limit order book markets. I demonstrate how the interaction between heterogeneous market
participants lead to specific limit order book markets characteristics, in particular the seemingly contradic-
tory presence of correlations in the buy and sell market order flows with informational efficiency expressed by
the absence of autocorrelations in the returns. By studying the effects of diversification among assets in this
context, I provide an alternative explanation for the presence of long memory in these order flows. With the
goal of provoking novel scientific debates on these important matters in finance, I then discuss the economic
implications and predictions if one assumes that these plausible market mechanisms capture the main features
for understanding how markets function.
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1. INTRODUCTION.

Trading in the limit order book is a way to deal with market frictions such as transaction costs by placing
limit orders whereas impatient traders place market orders for immediate execution. In this paper, I direct
my agent-based study towards the limit order book which is receiving an intense research interest as reviewed
in Bouchaud et al.4 which reports on common facts between these markets. The growth in electronic trade
execution systems has been indeed explosive and electronic trading is commonly based on a limit order book
structure. Liquidity is the central issue of the limit order book trading. Limit orders can be seen as supplies
of liquidity whereas market orders as demands of liquidity. The interaction between liquidity providers and
informed traders demanding immediacy of execution is indeed the main ingredient of micro-structure studies on
this topics and is a key ingredient of my present work. My approach aims also at bringing insights on the direct
impact of trading strategies on speculative markets dynamics as opposed to the traditional zero-intelligence
model studies.5 I thus introduced an original agent based framework3 for the limit order book with fully
strategic traders’ behaviors compatible with more general financial market models.1

The goal of the paper is to provide clear plausible explanations of seemingly contradictory empirical observa-
tions and a complete mathematical framework for understanding and controlling order book markets dynamics.
In particular, by controlling the descriptive time scale, I show how market impact, linear by definition and
the interaction between strategies in the limit order book market lead to the emergence of correlations in the
order flows, yet with informational efficiency expressed by the absence of correlations in the returns. Even
if information is Gaussian, the market order flows composed of informed traders is also determined by the
volatility linked order placement in the book. The link between volatility and order placement in the model is
also compatible with the observed relation between market volatility and the spread seen as the consequence
of the minimal non-zero evaluation of risks and costs, or as the presence of a specialist fixing this spread.
An ambitious goal of my agent-based study is to provide a solid theory that integrates infrastructural elements
with markets participants behaviors and their interactions, in order to produce a global systematic understand-
ing of the features that dominate financial markets exchanges. For this purpose, I complete the framework
for realistic modeling of modern markets by mathematical and statistical treatments of cross-markets dynam-
ics.2 These endogenous dynamics lead to more instabilities that are observed in the fluctuations of cross-assets
correlations. Diversifications among assets6 commonly sought to minimize risks are also responsible in this
framework to longer memories in the order flows.

The article is organized as follows. I summarize in section 2 the complexity modeling approach for limit
order book markets. In section 3, I remind the economic implications of the numerical experiments. In section
4, I complete the framework by studying the effects of diversifications in the cross-assets order book markets
dynamics. I draw conclusions in the last section.



2. DEFINITION OF THE AGENT-BASED LIMIT ORDER BOOK STRUCTURE.

The model describes a limit order book where a single asset is traded by various types of agents. These traders
populate the book with limit and market orders. Trading takes place at discrete time steps t. These periods
may be interpreted on a wide range of time scales: from tick level to trading days or weeks. The trades in
the model result from matching market orders against limit orders. The first group of agents is composed of n
market neutral traders operating as liquidity providers: at each time period, each agent i of this group places
limit orders (bid and ask) of one unit size at distance θi(t) (∼ estimation for the volatility during [t,t+1]) from
the price (mid-price which is the average of the best bid and best ask). Given a signal on expected price change
(“new information”) IID Gaussian noise ǫt ∼ N(0, D2) with D= noise level, informed agents then send market
orders to buy or sell limit orders that are at a distance below the expected market price. Prices then move up
or down according to the direction of the trades. The model produces stochastic heterogeneity and sustains it
through the updating of agents’ strategies. Let us define in a more mathematical way the ingredients of the
limit order dynamic model.

2.1. Strategic forces in the trading arena.

I describe first the adaptive decision-making rules at each time period. Liquidity providers’ strategies are
distances or thresholds θi(t) that determines their bid and ask orders. These positions results from their ex-
pectations of price movements and their risk aversion related for example to the uncertainty of execution and
the waiting time where informed traders can take advantage of the liquidity they are providing. Each agent i
places a bid and ask according to:

bid(i) = pt − θi(t)

ask(i) = pt + θi(t). (1)

Given an information ǫt on the price change, which can have many potential origins (networks of friends, public
news, private information) informed agents then send market orders to buy or sell limit orders that are at a
distance below the expected market price. The market order flow is thus determined by the direction of the
price change and the number of available limit orders in the book. Each liquidity provider’s limit order will be
likely to be executed or not according to:

• buy order likely to be executed if ǫt > θi(t): φi(t) = +1 (buy)

• sell order likely to be executed if ǫt < θi(t): φi(t) = −1 (sell)

• limit orders are canceled if not executed: φi(t) = 0 (canceled)

So:
φi(t) = 1ǫt>θi(t) − 1ǫt<−θi(t). (2)

In the model, orders placements and execution are very sensitive to the limit price, but not to the volume of the
order. By construction, the time period is the typical cancellation time of limit orders’ strategies responsible
for the market activity at the studied time scale. One should be aware that the frequencies of execution and
cancellation are comparable. The capabilities of the model demonstrated throughout the paper show that
the typical cancellation time can be a relevant choice for determining the actors of the returns dynamics at a
characteristic timescale. This quest and focus on the actors of the dynamics at a given time scale is indeed the
strength and utility of the statistical approach when attacking problems with high number of interacting entities.



2.2. Price response to aggregate demand.

I now describe the dynamics of the model ruled by the evolution of price and updating of strategies.
The price is adjusted by the excess demand Zt =

∑

φi(t), which corresponds to the orders likely to be executed,
through a price impact function g which depends on the total number of traded shares n:

rt = ln

(

pt+1

pt

)

= g(Zt). (3)

The empirical behavior4 of this function indicates increased linearity and decreased slope while increasing n. I
focus on the linear case defined as: rt =

Zt

λn
where ng′(0) = λ−1. λ represents market depth at the studied time

scale, the typical order imbalance needed to move the price by one point, normalized by total number of traded
shares n and in this framework characterizes the order book depth. A market with increased market depth is
more liquid. The current framework is inclusive (see Ghoulmié7 for further discussions on market impact). By
changing this function, one can explore the impact of mechanical execution on market learning dynamics.

2.3. Learning strategies for the fitness thresholds.

Initially, each liquidity provider agent has a trading rule given by the choice of a fitness threshold θi(0). At
each time step, if the change in price is greater than the parameter δ, each agent i consider the price movement
as significant and update with probability s according to the following defined rule: θi(t+ 1) = |rt|.
As a consequence of this rule, a fraction s ∈ [0, 1] of these agents updates their strategies/thresholds using
recent information. Because the limit order positions are directly related to the price changes, this updating
rule implies that the limit orders are placed outside a spread 2δ. I introduced here the parameter δ which
controls the spread, the difference between the best bid and best ask, and often fix it to 2δ. The reason of this
choice for modeling the creation of a spread in the book is that agents’ threshold are indeed an estimate of risk
and it is thus wise to bound it at a non-zero minimal value.
Introducing IID random variables ui(t), i = 1...n,t ≥ 0 uniformly distributed on [0, 1], which indicate whether
agent i updates his threshold or not, we can write the learning rule as

θi(t) = 1|rt−1|>δ[1ui(t)<s|rt−1|+ 1ui(t)≥sθi(t− 1)] + 1|rt−1|≤δθi(t− 1). (4)

Here ǫt represents randomness due to public news arrivals whereas the random variables ui(t) represent id-
iosyncratic sources of randomness. This way of updating can be seen as a stylized version of various estimators
of volatility based on moving averages or squared returns. As a consequence of this mapping, a feedback loop
is created between the volatility and the orders placement in the book.
The updating rule allows to differentiate between indistinguishable rational players. Indeed, given this prob-
abilistic updating model, even if we start from an initially homogeneous population θi(0) = θ0, heterogeneity
develops into the population through the learning process which corresponds to changes in the strategies mo-
tivated by trading costs reduction. In this sense, the heterogeneity of agents strategies is endogenous in this
model and, as we will see below, evolves through high fluctuations.

2.4. Features of the model.

Let us recall the main ingredients of the model defined above. At each time period :

• Informed agents receive a common signal ǫt ∼ N(0, D2).

• Each liquidity provider agent i uses a threshold θi(t) to set his bid and ask according to (1).

• if |ǫt| > θi(t) informed agent considers the signal as significant and are likely to generate a market or-
der φi(t) according to (2).



• The market price is affected by the excess demand and moves according to (3).

• Each liquidity provider agent adjusts, with probability s, her threshold according to (4).

With regard to some of the agent-based models considered in the literature, some important aspects are
the following:

• Prices move through market fluctuations of supply and demand. Players can be “fundamentalist” and
“chartist” traders. Price formation results from direct interaction of agents in the book.

• Information asymmetry: the model is based on the dynamics between informed traders and liquidity providers.
Liquidity providers use market neutral strategies and differ in the way they process the information.

• Liquidity providers are localized in the book.

• Endogenous heterogeneity: heterogeneity of agents behavioral rules appears endogenously due to their learn-
ing strategies. There is also a “structural” heterogeneity8–10 in the model between informed traders placing
market orders and liquidity providers placing limit orders. This structural diversity is also compatible with a
distinction between fundamentalists and chartists, between speculators with directional strategies and hedgers
with market-neutral strategies.11 The dynamics of this heterogeneity is responsible for the shape of the book.

• The spread is the consequence of the decision making under uncertainty. The order placement strategies
are indeed based on an estimate of risk which is wise to set strictly greater than zero.

The model has tractable parameters: s describes the average updating frequency, D is the standard devia-
tion of the news arrival process and λ is the market depth. Furthermore, as we will observe in the next section,
if we require to interpret specifically the trading periods this will put a further restriction on the parameters,
reducing the effective number of parameters. Nevertheless, the clear structure of the model generates time
series of returns with interesting complex dynamics and with properties similar to those observed empirically.



Parameters Monthly, Daily Dynamics Intraday Dynamics
Number of agents n 103 − 104 103 − 104

Level of noise D 10−3 − 10−2 10−4 − 10−3

Updating frequency s 10−1 − 10−2 10−1 − 10−2

Market depth λ 5− 20 2− 5
spread 2δ 10

nλ
10
nλ

Table 1. Parameter values for the different time scales.

3. COMPUTER MODEL EXPERIMENTS.

The model is straightforward to simulate and the results can be reproduced in a robust way. I present some
typical results that I obtained for all the simulated runs of the model when fixing a set of parameters. The
simulations identify basic properties of the model and indicate the range of parameters that accord with the
empirical data on asset returns. Table 1 recalls the various investigated ranges of the parameters for typical
short term dynamics and long term dynamics.

Using the parameter ranges above, I perform an extensive simulation study of price behavior in this model.
Figures 1, 2 and 3 illustrate typical sample paths obtained with different parameter values: they all generate
series of returns with realistic ranges and realistic values of annualized volatility. For each series, the figures
give the demand Zt, the market activity A(t) = |Zt| which corresponds to the traded volume, the evolution of
the price with a plot of the logarithmic price ln(pt), the returns rt, the annualized volatility, the histogram of
returns both in linear and log scales, the ACF of returns Cr, and the ACF of absolute returns C|r|.
We note that all the return series possess some regularities that match some of the empirical properties3:

• Excess volatility: the sample standard deviation of returns can be much larger than the standard devia-
tion of the input noise representing news arrivals: σ̂(t) ≫ D. This is the consequence of orders’ strategies that
transform a signal representing news into binary trading at a fixed transaction volume. Paradoxically, it is the
comparison of the news to estimates of the volatility that leads to an amplification of the volatility. In other
words, even if agents are acting sensibly to minimize their risks, they are producing collectively more variability
in the returns.
This result is observed for various values of T ′.

• Mean-reverting volatility: the market price fluctuates endlessly and displays “stochastic volatility”. The
volatility, as measured by the moving average estimator σ̂(t), goes neither to zero nor to infinity and displays
a mean-reverting behavior. This behavior is found in many empirical studies. GARCH models, on one hand,
and stochastic volatility models, on the other, aim at reproducing this mean-reverting stochastic behavior of
volatility.

• The simulated process generates a leptokurtic distribution of returns with (semi-)heavy tails, with a kurtosis
around κ ≃ 4 − 11 (κ = 4.5 for the run presented in Figure 1) for daily returns and fatter tails in the returns
κ ≃ 11−50 (κ = 16.5 for the run presented in Figure 2 and κ = 35 in Figure 3) for intraday dynamics including
very short term timescales. This result confirms the role of Deff = Dλ at describing both long term and short
term dynamics and in having a unified framework to study financial market dynamics at various time scales.
This result expresses a relation in the model between the level of diffusive behavior of the news, the market
depth which describes the liquidity of the market and the trading period which can be interpreted in this
framework as the typical cancellation time of agents’ limit orders.

• The returns are uncorrelated: the sample autocorrelation function of the return exhibits an insignificant
value (very similar to that of asset returns) at all lags, indicating the absence of linear serial dependence in the
returns.
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Figure 1. Daily prices and volatility behaviors generated numerically by the agent-based market model for n = 2000,
D = 0.001, λ = 10, s = 0.015 and δ = 5

nλ
. The simulated behaviors correspond to long term dynamics. One can

observe in the presented pictures: the prices behavior in Plot3, the endogenous bursts of market activity in Plots 1, 2
and 4, the non-Gaussian distribution of the returns in Plots 5 and 6, the stochastic mean-reverting volatility in Plot7,
the uncorrelation of the returns in Plot8 and the volatility clustering in Plot9.

• Diagnostics for volatility clustering : the autocorrelation function of absolute returns remains positive, and
significantly above the autocorrelation of the returns, over many time lags, corresponding to persistence in the
amplitude of returns over periods ranging from a few weeks to several months. This nonlinear dependence in
the returns, shown in Figure 4, is an indication of volatility clustering. By construction of the model, these
correlations are also in the market orders flows as observed empirically.

The computer controlled experiments confirm the role of Deff as a control parameter for the descriptive
time scale of the returns, and the role of 1/s as a time scale parameter that controls the dependence properties
of the returns.
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Figure 2. Intraday prices and volatility behaviors generated numerically by the agent-based market model for n = 2000,
D = 0.001, λ = 3, s = 0.015 and δ = 5

nλ
. In Plots 4 and 5, the distribution of returns has power law look. One note the

fatter tails in the distribution of returns compared to the longer term dynamics. For the run presented, the kurtosis is
16.5 which is much higher than 4.5 for the run presented in Figure 1.
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Figure 3. Very short term ( 1min) dynamics according to the model, generated numerically for n = 10000, D = 0.0001,
λ = 5, s = 0.015 and δ = 5

nλ
. The simulations can allow a tick by tick resolution. The distribution of returns in

Plots 4 and 5 tends to be discrete which is consistent with ultra high frequency finance. The high occurrence of zeros,
also observed with the model at longer term dynamics, are consistent with high frequency empirical finance. One can
decrease the high number of zeros by simply adding a noise term with small amplitude for small effects in the price
formation rule.
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Confidence intervals computed for 95% of a normal distribution are drawn which shows the uncorrelation of the returns.
The autocorrelation function of the absolute returns remains positive for a period 1/s and then oscillates around zero
before vanishing. These oscillations, that may link the adjustement frequency to some seasonalities observed in the
data, are no longer observed when studying the multi-asset case2 where the full long memory effect is obtained.



4. ORDER BOOK MARKETS CROSS-ASSETS DYNAMICS

4.1. Definition of the multi-asset model

I now extend the previous model to a two-asset case that can in fact be directly generalized to a higher number
of assets. The model describes a market where two assets, with mid-prices denoted by p1,t and p2,t respectively,
are traded by n liquidity providers agents at discrete time steps t and informed traders. Compared to the single
asset case, at each time step, the model is updated according to the additional rule:

• Every informed agent receives a common signal ǫt ∈ N(0, D2) for both assets.
• Each liquidity provider agent i has a strategy for the first asset, θ1,i(t), and for the second asset, θ2,i(t), and
then places orders of respectively ω1,i(t) and ω2,i(t) units of assets. The weights ω1,i(t) and ω2,i(t) are defined
positive and bounded by the following constrains:

ω1,i(t) + ω2,i(t) = 1. (5)

• The asset prices p1,t and p2,t are affected by the excess demand and move according to

r1,t = ln

(

p1,t
p1,t−1

)

= g

(∑

i ω1,iφ1,i(t)

n

)

, (6)

r2,t = ln

(

p2,t
p2,t−1

)

= g

(∑

i ω2,iφ2,i(t)

n

)

, (7)

where r1,t and r2,t are the returns and g is the price impact function.
• Each agent updates, with probability s, its threshold θ1,i(t) to |r1,t| and θ2,i(t) to |r2,t|.

• Each agent updates, with probability s, the weights according to

ω1,i(t) =
1

1 + eβ.Vt

, (8)

ω2,i(t) = 1− ω1,i(t), (9)

where the difference between assets absolute returns Vt = |r2,t| − |r1,t| is the fitness function that determines
the adaptive asset allocation and β is the parameter that controls the intensity of choice between the two assets.
The parameter β determines the rationality of agent’s choice. For β = 0, agents keep the same equal weights
on both assets independently of the fitness function, and the behavior of the returns is equivalent to the single
asset market studied in the first section. For an infinite value of β, agents are fully rational and chose radically
the most profitable asset, the asset with the highest absolute return.

4.2. Nonstationarity of assets returns

In this section I explore numerically the effects of the diversification on the complex behavior of asset returns.
The analysis is similar to the multi-asset study2 previously achieved and I recall the results obtained. In
particular, by setting the other parameters in ranges similar to those required to get realistic dynamics in
the single asset case, we study the role of the parameter β that characterizes the asset allocation. The price
impact function has been chosen to be linear, g(x) = x/λ, with the same market depth λ for both assets. The
behavior of the returns generated by the present model is significantly different from the single asset case. In
particular, the returns, reported in Fig. 5 for n = 1500, s = 0.015, D = 0.001, λ = 2 and β = 1000, produce
fluctuations that are larger than those of the the single asset model. This behavior is emphasized by the fatter
tails observed in the probability distribution function and reported in Fig. 6 where a Gaussian distribution is
also plotted for visual comparison.

Fig. 7 illustrates that additional differences from the single asset model are observed in the behavior of the
annualized volatilities. It is seen that the volatilities of the two-asset model switch intermittently, in a sort of
mean reverting behavior, from high to low values in an anti-correlated fashion. These sudden changes of regime
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Figure 5. Time series plots of asset1 and asset2 returns, r1 (top) and r2 (bottom), generated numerically by the agent-
based market model for n = 1500, D = 0.001, λ = 2, s = 0.015 and β = 1000. The time series exhibit regime-switching
type of behaviors between a high and low volatility periods.

in the volatility are observed in financial data. Compared to the single asset model, this new result brings
us closer to the empirical facts observed in financial data. Moreover, these higher fluctuations occur without
structural changes in the market or as a result of changes in the fundamentals and are simply related to the
diversification process: the agents having very similar trading strategies allocate intermittently more weight on
one of the asset and, therefore, leading to higher fluctuations in the traded volume.

I also perform an analysis of summary statistics for 5 consecutive periods of 10000 time steps for the time
series generated by the multi-asset model and the single-asset model. These summary statistics are reported
in Tabs. 2, 3 and 4 respectively. In the two-asset case we observe fluctuations of the kurtosis between 3 and 12,
indicating nonstationarity of asset returns. In the single asset case, instead, this parameter is almost stationary.
This result implies that the multi asset diversification of the proposed model promotes non-stationarity, an
effective feature that often causes problems to policymakers. We must remark on the destabilizing role of this
diversification in comparison with the benchmark single asset market case. This is an interesting case where
diversification, which is usually seen as a way to reduce portfolio risk, increases market instability.

4.3. Nonlinear diagnostics

In the present section I estimate the autocorrelation function for the returns of the two assets as well as their
absolute value. The results, reported in Fig. 8, show an absence of correlation in the returns time series
(bottom). For the absolute value (top), the nonlinear diagnostics point out two different phases: the first, for
small lags, is related to the presence of volatility clustering, a feature noticed also in the single asset model,
the second persistent phase has not previously been observed. The first phase, analogously to that seen in the
one asset model, corresponds to the clusters of volatility of length 1/s and can be described by an exponential
decay with characteristic time scale of 70 periods. At large lags we instead observe a slower decay while the
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Figure 6. Empirical densities plots P (r1) and P (r2) for asset1 and asset2 time series returns, generated numerically by
the agent-based market model for n = 1500, D = 0.001, λ = 2, s = 0.015 and β = 1000. These time series exhibit fatter
tails than the Gaussian distribution. The Gaussian distribution case and the empirical density P (r) for the returns
generated by the single-asset model for n = 1500, D = 0.001, λ = 10 and s = 0.015 are also plotted for comparison.

Period mean(10−4) std(10−2) skew(10−2) kurtosis max(10−2) min(10−2)
1 1.1 1.3 24 11.1 10.19 -9.64
2 7.3 2.3 7.5 7.6 12 -12.53
3 0.6 4 -1.9 4 13.44 -13.38
4 3.9 3.1 1.9 6.5 12.87 -12.94
5 -2.4 2.8 0.5 5.7 12.29 -12.89

Table 2. Summary statistics for the returns of the first asset in the two-asset model. The estimation is obtained over
10000 observations.

.

Period mean(10−4) std(10−2) skew(10−2) kurtosis max(10−2) min(10−2)
1 2.2 4.3 8.3 3.5 13.37 -13.63
2 6.8 3.6 4 4.3 12.85 -12.89
3 0.6 1.8 -7 11.6 12.71 -12.33
4 3.8 3.1 2.5 5.7 12.61 -11.89
5 -0.1 3.2 3 5.6 12.1 12.63

Table 3. Summary statistics for the returns of the second asset in the two-asset model. The estimation is obtained
over 10000 observations.
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Period mean(10−4) std(10−2) skew(10−2) kurtosis max(10−2) min(10−2)
1 0.05 1.05 4.3 4.3 6.7 -5.3
2 0.5 1.04 4.2 4.2 5.13 -5.4
3 0.03 1.05 3.6 3.6 4.4 -5.2
4 2.7 1.05 3 4.7 5.3 -5.6
5 0.4 1.01 -5 4 5.3 -6.7

Table 4. Summary statistics for the returns in the single asset model. The estimation is obtained over 10000 observa-
tions.
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Figure 8. Top: Autocorrelation functions ρ(|r1|) and ρ(|r2|) of |r1| and |r2| generated numerically by the agent-based
market model for n = 1500, D = 0.001, λ = 2, s = 0.015 and β = 1000. The volatility clustering phenomenon is
reproduced: these functions remain significantly positive over a long period with an initial phase similar to the single
asset case. An exponential fit (dashed line) of the initial decay has been plotted. We also plotted for comparison the
autocorrelation function ρ(|r|) for the absolute values of the returns generated by the single-asset model with n = 1500,
D = 0.001, λ = 10 and s = 0.015. In the two-asset case, we observe at large lags a slower decay and the autocorrelations
remain significantly positive. The persistence in the amplitude of the returns in the two-asset case is definitely closer
to that observed in financial data than is the persistence generated in the one-asset case. Bottom: Corresponding
autocorrelation functions ρ(r1) and ρ(r2) of r1 and r2. The multi-asset model generates an absence of autocorrelation
in the returns.

autocorrelations remain significantly positive over a long period. I thus conclude that the fluctuations persist
in the multi-asset case over a longer period than in the single asset case, Fig. 8. This behavior is definitely
closer to that observed in financial time series than is the behavior exhibited by the single asset model.

4.4. Robustness and implications of the results

A parametric analysis of the two-asset model confirms the robustness of the results presented in the previous
two sections: this is a desirable property for practitioners when building market models. Varying the updating
frequency, s, affects the initial exponential decay of the autocorrelation function of the volatilities. The char-
acteristic time of this decay is, indeed, roughly proportional to 1/s. When increasing significantly the number
of agents, n, we have to decrease the parameter Deff in order to get an effective impact of the asset allocation
on market moves and reproduce the results reported in the previous subsection. When increasing the intensity
of choice, β, the diversification is more effective and the results are more pronounced: for β = 10000, the
fluctuations in the kurtosis of the returns is higher as are the fluctuations in Vt. The autocorrelation function
of the instantaneous volatility, instead, remains unchanged against variations of β for both assets, see Fig. 9.
The limit case with infinite β exhibits two distinct behaviors for the volatilities of the two assets as a result
of the radical choice: returns similar to the single asset case for the most often chosen asset and returns with
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s = 0.015, β = 1000 and β = 10000. When varying the intensity of choice, the model is robust in generating higher
persistence in the fluctuations compared to the single asset case.

lower amplitude but with higher variations and persistence in the volatility for the other. The autocorrelation
function for this particular case is reported in Fig. 9 where it is evident that the volatility behaves similarly to
the single asset case which is plotted alongside.

By using a comprehensive and dynamic approach in the asset allocation decision this agent-based model
also offers a plausible mechanism for generating correlations among returns of different assets. The model is
successful in reproducing an observed phenomenon in speculative markets where traders crowd or flock from
one volatile security to another. Moreover, I computed the correlation coefficient between assets returns for
5 consecutive periods of 10000 time steps generated by the multi-asset model. This correlation parameter
fluctuates between 0.3 and 0.7 and we conclude that the correlations are unstable. This instability emerges
endogenously as a result of trading strategies and not from the input signal that can be interpreted as the
fundamentals of these assets. I note the relationship between volatilities and correlations. The correlation
parameter is indeed positively correlated to the difference between volatilities which determines the asset
allocation choice and its impact on market movements. This agent-based approach can thus lead to a better
appreciation of the relationships among many asset classes, and this should improve the financial decision-
making process in limit order book markets.



5. DISCUSSIONS AND CONCLUSIONS

Part of my research consists in building solid theoretical market models that are able to explain the origins
of observed statistical regularities in terms of economic behavior of market participants and their interactions:
this is a challenging aggregation problem where I explain the behavior of macro-variables such as prices and
trading volumes, starting from micro-variables, i.e. individual agents behavior. In the context of limit order
book markets that characterizes the modern electronic functioning of financial markets, I showed how in
a mean field Ising style market model with original adaptive modeling of agents behavior, the interaction
between heterogeneous trading strategies and market impact lead to the major empirical price properties such
as excessive fluctuations in assets returns and to characteristics specific to these markets regarding the profile of
the book. By using a Boltzmann-Gibbs rule for the dynamic asset allocation in the model, I reconcile seemingly
contradictory notions in finance, the informational efficiency characterized by the absence of autocorrelation
in assets returns and the long memory in market orders buy and sell flows.

What is novel in this work is to gather in a unified framework and in the specific context of limit order book
markets many makets dynamics mechanisms and observed statistical behaviors. I remind the readers that in
the present work I have studied with very few hypothesis and a sensible use of parameters, limit order book
dynamics for all timescales, and specific characteristics of order book markets dynamics along with cross-market
dynamics. The reason for that is first to show that taking into account cross-markets dynamics is the key step
to capture all the empirical facts rather than trying ingeniously to create single asset models that matches
perfectly all the stylized facts or to just focus on the role of market impact. In light of my results, studying
the nonlinear role of market impact in limit order book dynamics without attempting to consider the effects of
cross-markets dynamics is incomplete. Due to the comprehensive structure of the model, the results obtained
through computer controlled experiments can be explained and traced back analytically to agents’ adaptive
behavior. Because we are dealing with a general framework, I believe one can draw bold conclusions regarding
risks that arise from my works. Indeed, even if individually agents are acting in a sensible way regarding their
risks, by being risk averse and by diversifying, the collective consequences of their trades are in both cases dra-
matic increases of market instabilities. This is a call for policymakers for seeking novel and global approaches
regarding risk taking decisions. Agent based modeling allows also to study more sophisticated dynamics and
learn more about financial markets, however because we can understand here many empirical properties with
the presented models, I believe it is fair to draw at this point far reaching conclusions and question many
research directions and policies taken in this field.
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